Suppr超能文献

基于新型随机局部多车最优速度模型的车对车碰撞预警系统。

Rear-end collision warning of connected automated vehicles based on a novel stochastic local multivehicle optimal velocity model.

机构信息

School of Science, Wuhan University of Technology, Wuhan, 430070, PR China; Intelligent Transport Systems Research Center, Wuhan University of Technology, Wuhan, 430063, PR China.

Intelligent Transport Systems Research Center, Wuhan University of Technology, Wuhan, 430063, PR China.

出版信息

Accid Anal Prev. 2020 Dec;148:105800. doi: 10.1016/j.aap.2020.105800. Epub 2020 Oct 29.

Abstract

Studying the rear-end early warning methods of connected automated vehicles (CAVs) is useful for issuing early warnings and reducing traffic accidents. Establishing a corresponding driving model according to CAV characteristics is necessary when designing intelligent decision and control systems, especially for the safety speed threshold. However, since traffic systems are stochastic, there are random factors that influence car-following behavior. Therefore, this study proposes a rear-end collision warning method for CAVs based on a stochastic local multivehicle optimal speed (SLMOV) car-following model. First, the SLMOV model is proposed to characterize the car-following behavior of CAVs. Simultaneously, a stability analysis and parameter estimation method are discussed. Second, the safety distance between the CAVs changes with time because the speed of the rear vehicles satisfies the SLMOV model, which is used to calculate the safety probability of rear-end CAV collisions through an analysis of the driving process. The speed threshold is assessed by controlling the rear-end collision probability. Third, next-generation simulation (NGSIM) data are used in an empirical analysis of a rear-end collision warning method on the basis of a parameter estimation of the SLMOV model. The results present the speed thresholds of vehicles under different braking deceleration levels. Finally, the merits and demerits of fixed-speed and variable-speed adjustment time intervals are compared by considering driving safety and comfort as evaluation indexes. A reasonable CAV adjustment time interval of 0.4 s is determined. This result can be used to help develop a vehicle loading rear-end collision warning system.

摘要

研究车对车通信环境下自动驾驶汽车(CAV)的追尾预警方法对于发出预警和减少交通事故具有重要意义。在设计智能决策和控制系统时,需要根据 CAV 的特点建立相应的驾驶模型,特别是对于安全速度阈值。然而,由于交通系统是随机的,存在影响跟驰行为的随机因素。因此,本研究提出了一种基于随机局部多车最优速度(SLMOV)跟驰模型的 CAV 追尾碰撞预警方法。首先,提出了 SLOMV 模型来描述 CAV 的跟驰行为,同时讨论了稳定性分析和参数估计方法。其次,由于后车速度满足 SLOMV 模型,CAV 之间的安全距离随时间变化,通过对驾驶过程的分析,计算了后车追尾碰撞的安全概率。通过控制追尾碰撞概率来评估速度阈值。然后,基于 SLOMV 模型的参数估计,使用下一代仿真(NGSIM)数据对追尾碰撞预警方法进行实证分析。结果给出了在不同制动减速水平下车辆的速度阈值。最后,从驾驶安全性和舒适性两个评价指标出发,比较了固定速度和变速调整时间间隔的优缺点,确定了合理的 CAV 调整时间间隔为 0.4s。该结果可用于开发车辆自动防追尾碰撞预警系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验