Suppr超能文献

贝叶斯预测概率:监测临床试验的一种好方法。

Bayesian predictive probabilities: a good way to monitor clinical trials.

机构信息

Anesthesiology and Intensive Care Department, Centre Hospitalier Universitaire de Besançon, Besançon, France; iCUBE, UMR7357, Université de Strasbourg, Illkirch Cedex, France.

Anesthesiology and Intensive Care Department, IHU-Strasbourg, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France.

出版信息

Br J Anaesth. 2021 Feb;126(2):550-555. doi: 10.1016/j.bja.2020.08.062. Epub 2020 Oct 29.

Abstract

BACKGROUND

Bayesian methods, with the predictive probability (PredP), allow multiple interim analyses with interim posterior probability (PostP) computation, without the need to correct for multiple looks at the data. The objective of this paper was to illustrate the use of PredP by simulating a sequential analysis of a clinical trial.

METHODS

We used data from the Laryngobloc trial that planned to include 480 patients to demonstrate the equivalence of success between a laryngoscopy performed with the Laryngobloc® device and a control device. A crossover Bayesian design was used. The success rates of the two laryngoscopy devices were compared. Interim analyses, computed from random numbers of subjects, were simulated.

RESULTS

The PostP of equivalence rapidly reached the predefined bound of 0.95. The PredP computed with an equivalence margin of 10% reached the efficacy bound between 352 and 409 of the 480 included patients. If a frequentist analysis had been made on the basis of 217 out of 480 subjects, the study would have been prematurely stopped for equivalence. The PredP indicated that this result was nonetheless unstable and that the equivalence was, thus far, not guaranteed.

CONCLUSIONS

Based on these interim analyses, we can conclude with a sufficiently high probability that the equivalence would have been met on the primary outcome before the predetermined end of this particular trial. If a Bayesian approach using PredP had been used, it would have allowed an early termination of the trial by reducing the calculated sample size by 15-20%.

摘要

背景

贝叶斯方法通过预测概率(PredP),可以在不进行多次数据观察校正的情况下,进行多次中期分析和中期后验概率(PostP)计算。本文旨在通过模拟临床试验的序贯分析来说明 PredP 的使用。

方法

我们使用了 Laryngobloc 试验的数据,该试验计划纳入 480 例患者,旨在证明使用 Laryngobloc®设备进行喉镜检查与对照设备的成功率相当。采用交叉贝叶斯设计。比较了两种喉镜设备的成功率。模拟了基于随机数量的受试者进行的中期分析。

结果

等效性的 PostP 迅速达到了预设的 0.95 边界。使用等效性边界为 10%的 PredP 计算,在纳入的 480 例患者中,达到了 352 至 409 例的疗效边界。如果基于 480 例受试者中的 217 例进行频率分析,该研究将因等效性而提前终止。PredP 表明,尽管如此,该结果仍不稳定,等效性尚无法保证。

结论

基于这些中期分析,我们可以有足够高的概率得出结论,即在预定试验结束之前,主要结局将达到等效性。如果使用基于 PredP 的贝叶斯方法,可以通过减少计算的样本量 15-20%来提前终止试验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验