Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.
Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.
Microbiol Res. 2021 Feb;243:126625. doi: 10.1016/j.micres.2020.126625. Epub 2020 Oct 18.
In this study the intraspecies diversity of Fructilactobacillus (F.) sanfranciscensis (formerly Lactobacillus sanfranciscensis) was characterized by comparative genomics supported by physiological data. Twenty-four strains of F. sanfranciscensis were analyzed and sorted into six different genomic clusters. The core genome comprised only 43,14 % of the pan genome, i.e. 0.87 Mbp of 2.04 Mbp. The main annotated genomic differences reside in maltose, fructose and sucrose as well as nucleotide metabolism, use of electron acceptors, and exopolysacchride formation. Furthermore, all strains are well equipped to cope with oxidative stress via NADH oxidase and a distinct thiol metabolism. Only ten of 24 genomes contain two maltose phosphorylase genes (mapA and mapB). In F. sanfranciscensis TMW 1.897 only mapA was found. All strains except those from genomic cluster 2 contained the mannitol dehydrogenase and should therefore be able to use fructose as external electron acceptor. Moreover, six strains were able to grow on fructose as sole carbon source, as they contained a functional fructokinase gene. No growth was observed on pentoses, i.e. xylose, arabinose or ribose, as sole carbon source. This can be referred to the absence of ribose pyranase rbsD in all genomes, and absence of or mutations in numerous other genes, which are essential for arabinose and xylose metabolism. Seven strains were able to produce exopolysaccharides (EPS) from sucrose. In addition, the strains containing levS were able to grow on sucrose as sole carbon source. Strains of one cluster exhibit auxotrophies for purine nucleotides. The physiological and genomic analyses suggest that the biodiversity of F. sanfranciscensis is larger than anticipated. Consequently, "original" habitats and lifestyles of F. sanfranciscensis may vary but can generally be referred to an adaptation to sugary (maltose/sucrose/fructose-rich) and aerobic environments as found in plants and insects. It can dominate sourdoughs as a result of reductive evolution and cooperation with fructose-delivering, acetate-tolerant yeasts.
在这项研究中,通过比较基因组学和生理数据来描述弗氏果糖杆菌(Fructilactobacillus)(以前称为旧金山乳杆菌(Lactobacillus sanfranciscensis))的种内多样性。分析了 24 株弗氏果糖杆菌,并将其分为六个不同的基因组群。核心基因组仅占泛基因组的 43.14%,即 2.04 Mbp 中的 0.87 Mbp。主要的注释基因组差异存在于麦芽糖、果糖和蔗糖以及核苷酸代谢、电子受体的利用和胞外多糖的形成中。此外,所有菌株都通过 NADH 氧化酶和独特的硫醇代谢来很好地应对氧化应激。在 24 个基因组中,只有 10 个包含两个麦芽糖磷酸化酶基因(mapA 和 mapB)。在 F. sanfranciscensis TMW 1.897 中仅发现了 mapA。除基因组群 2 中的菌株外,所有菌株都含有甘露醇脱氢酶,因此应该能够将果糖用作外部电子受体。此外,有 6 株菌能够以果糖作为唯一碳源生长,因为它们含有功能性果糖激酶基因。没有观察到戊糖(即木糖、阿拉伯糖或核糖)作为唯一碳源的生长。这可以归因于所有基因组中都没有核糖吡喃酶 rbsD,以及许多其他对阿拉伯糖和木糖代谢至关重要的基因缺失或突变。有 7 株菌能够从蔗糖中产生胞外多糖(EPS)。此外,含有 levS 的菌株能够以蔗糖作为唯一碳源生长。一个群的菌株表现出嘌呤核苷酸的营养缺陷型。生理和基因组分析表明,弗氏果糖杆菌的生物多样性比预期的要大。因此,“原始”栖息地和生活方式可能会有所不同,但通常可以归因于对含糖(麦芽糖/蔗糖/果糖丰富)和需氧环境的适应,这些环境存在于植物和昆虫中。它可以通过还原进化和与提供果糖、耐受乙酸的酵母合作,在酸面团中占据优势。