Suppr超能文献

利用人工智能深度学习技术,通过术前计算机断层扫描成像来确定胰腺囊性肿瘤的恶性潜能。

Use of Artificial Intelligence Deep Learning to Determine the Malignant Potential of Pancreatic Cystic Neoplasms With Preoperative Computed Tomography Imaging.

机构信息

Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA.

Department of Surgical Oncology, Valley Health System, Paramus, NJ, USA.

出版信息

Am Surg. 2021 Apr;87(4):602-607. doi: 10.1177/0003134820953779. Epub 2020 Nov 1.

Abstract

BACKGROUND

Society consensus guidelines are commonly used to guide management of pancreatic cystic neoplasms (PCNs). However, downsides of these guidelines include unnecessary surgery and missed malignancy. The aim of this study was to use computed tomography (CT)-guided deep learning techniques to predict malignancy of PCNs.

MATERIALS AND METHODS

Patients with PCNs who underwent resection were retrospectively reviewed. Axial images of the mucinous cystic neoplasms were collected and based on final pathology were assigned a binary outcome of advanced neoplasia or benign. Advanced neoplasia was defined as adenocarcinoma or intraductal papillary mucinous neoplasm with high-grade dysplasia. A convolutional neural network (CNN) deep learning model was trained on 66% of images, and this trained model was used to test 33% of images. Predictions from the deep learning model were compared to Fukuoka guidelines.

RESULTS

Twenty-seven patients met the inclusion criteria, with 18 used for training and 9 for model testing. The trained deep learning model correctly predicted 3 of 3 malignant lesions and 5 of 6 benign lesions. Fukuoka guidelines correctly classified 2 of 3 malignant lesions as high risk and 4 of 6 benign lesions as worrisome. Following deep learning model predictions would have avoided 1 missed malignancy and 1 unnecessary operation.

DISCUSSION

In this pilot study, a deep learning model correctly classified 8 of 9 PCNs and performed better than consensus guidelines. Deep learning can be used to predict malignancy of PCNs; however, further model improvements are necessary before clinical use.

摘要

背景

社会共识指南常用于指导胰腺囊性肿瘤(PCN)的管理。然而,这些指南存在不必要手术和漏诊恶性肿瘤的缺点。本研究旨在使用 CT 引导的深度学习技术预测 PCN 的恶性程度。

材料和方法

回顾性分析接受切除术的 PCN 患者。收集黏液性囊腺瘤的轴位图像,并根据最终病理结果将其分为高级别肿瘤或良性的二分类结果。高级别肿瘤定义为腺癌或伴有高级别异型增生的导管内乳头状黏液性肿瘤。将 66%的图像用于训练卷积神经网络(CNN)深度学习模型,并使用该训练模型测试 33%的图像。将深度学习模型的预测结果与福冈指南进行比较。

结果

27 名患者符合纳入标准,其中 18 名用于训练,9 名用于模型测试。经过训练的深度学习模型正确预测了 3 例恶性病变和 5 例良性病变。福冈指南正确地将 3 例恶性病变分类为高危,将 6 例良性病变分类为可疑。根据深度学习模型的预测结果,可以避免 1 例漏诊和 1 例不必要的手术。

讨论

在这项初步研究中,深度学习模型正确分类了 9 例 PCN 中的 8 例,表现优于共识指南。深度学习可用于预测 PCN 的恶性程度;然而,在临床应用之前,还需要进一步改进模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验