Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain.
Department of Gastroenterology, University Hospital, 12 Octubre. Av. de Córdoba, s/n, 28041, Madrid, Spain.
Int J Comput Assist Radiol Surg. 2022 Oct;17(10):1855-1865. doi: 10.1007/s11548-022-02706-z. Epub 2022 Aug 11.
Pancreatic cancer is one of the most lethal neoplasms among common cancers worldwide, and PCLs are well-known precursors of this type of cancer. Artificial intelligence (AI) could help to improve and speed up the detection and classification of pancreatic lesions. The aim of this review is to summarize the articles addressing the diagnostic yield of artificial intelligence applied to medical imaging (computed tomography [CT] and/or magnetic resonance [MR]) for the detection of pancreatic cancer and pancreatic cystic lesions.
We performed a comprehensive literature search using PubMed, EMBASE, and Scopus (from January 2010 to April 2021) to identify full articles evaluating the diagnostic accuracy of AI-based methods processing CT or MR images to detect pancreatic ductal adenocarcinoma (PDAC) or pancreatic cystic lesions (PCLs).
We found 20 studies meeting our inclusion criteria. Most of the AI-based systems used were convolutional neural networks. Ten studies addressed the use of AI to detect PDAC, eight studies aimed to detect and classify PCLs, and 4 aimed to predict the presence of high-grade dysplasia or cancer.
AI techniques have shown to be a promising tool which is expected to be helpful for most radiologists' tasks. However, methodologic concerns must be addressed, and prospective clinical studies should be carried out before implementation in clinical practice.
胰腺癌是全球常见癌症中最致命的肿瘤之一,而胰腺上皮内瘤变(pancreatic cysts lesions,PCLs)是这种癌症的已知前体。人工智能(artificial intelligence,AI)可以帮助提高和加速胰腺病变的检测和分类。本综述的目的是总结关于人工智能应用于医学影像学(计算机断层扫描 [computed tomography,CT] 和/或磁共振 [magnetic resonance,MR])检测胰腺癌和胰腺囊性病变的诊断效能的文章。
我们使用 PubMed、EMBASE 和 Scopus 进行了全面的文献检索(从 2010 年 1 月至 2021 年 4 月),以确定评估基于 AI 的方法处理 CT 或 MR 图像以检测胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)或胰腺囊性病变(pancreatic cystic lesions,PCLs)的诊断准确性的全文文章。
我们共找到了 20 项符合纳入标准的研究。大多数使用的基于 AI 的系统是卷积神经网络。10 项研究旨在检测 PDAC,8 项研究旨在检测和分类 PCLs,4 项研究旨在预测高级别上皮内瘤变或癌症的存在。
AI 技术已被证明是一种很有前途的工具,预计将对大多数放射科医生的工作有所帮助。然而,必须解决方法学问题,并在临床实践中实施之前进行前瞻性临床研究。