Suppr超能文献

超越价值:贝叶斯统计与因果关系。

Beyond the -value: Bayesian Statistics and Causation.

机构信息

University of Texas at Austin, Austin, Texas.

Silberman College of Social Work, Hunter College, CUNY, New York, New York, USA.

出版信息

J Evid Based Soc Work (2019). 2021 May-Jun;18(3):284-307. doi: 10.1080/26408066.2020.1832011. Epub 2020 Oct 31.

Abstract

Statistical paradigms limit the perspective and tools social work researchers use to study the world and answer questions impacting people and policy. Currently, quantitative social work researchers overwhelmingly rely on the frequentist paradigm of statistics. This paper discusses foundational differences between the frequentist and Bayesian statistical paradigms, describes basic concepts of Bayesian analysis, compares Bayesian and frequentist statistical analysis for a sample social work problem, and introduces two types of causal analyses built on Bayesian statistical thinking: counterfactual causality, and causality based on work by computer scientist Judea Pearl. Implications for social work research are discussed.

摘要

统计范式限制了社会工作研究人员研究世界和回答影响人们和政策的问题的视角和工具。目前,定量社会工作研究人员压倒性地依赖于统计学的频率主义范式。本文讨论了频率主义和贝叶斯统计范式之间的基本差异,描述了贝叶斯分析的基本概念,比较了贝叶斯和频率主义统计分析对一个样本社会工作问题,并介绍了两种基于贝叶斯统计思想的因果分析:反事实因果关系,以及基于计算机科学家朱迪亚·珀尔工作的因果关系。讨论了对社会工作研究的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验