Suppr超能文献

利用机器学习技术预测奶牛热应激。

Predicting dairy cattle heat stress using machine learning techniques.

机构信息

Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State 39762.

Department of Industrial and Systems Engineering, Mississippi State University, Mississippi State 39762.

出版信息

J Dairy Sci. 2021 Jan;104(1):501-524. doi: 10.3168/jds.2020-18653. Epub 2020 Oct 31.

Abstract

The objectives of the study were to use a heat stress scoring system to evaluate the severity of heat stress on dairy cows using different heat abatement techniques. The scoring system ranged from 1 to 4, where 1 = no heat stress; 2 = mild heat stress; 3 = severe heat stress; and 4 = moribund. The accuracy of the scoring system was then predicted using 3 machine learning techniques: logistic regression, Gaussian naïve Bayes, and random forest. To predict the accuracy of the scoring system, these techniques used factors including temperature-humidity index, respiration rate, lying time, lying bouts, total steps, drooling, open-mouth breathing, panting, location in shade or sprinklers, somatic cell score, reticulorumen temperature, hygiene body condition score, milk yield, and milk fat and protein percent. Three different treatments, namely, portable shade structure, portable polyvinyl chloride pipe sprinkler system, or control with no heat abatement, were considered, where each treatment was replicated 3 times with 3 second-trimester lactating cows. Results indicate that random forest outperformed the other 2 methods, with respect to both accuracy and precision, in predicting the sprinkler group's score. Both logistic regression and random forest were consistent in predicting scores for control, shade, and combined groups. The mean probability of predicting non-heat-stressed cows was highest for cows in the sprinkler group. Finally, the logistic regression method worked best for predicting heat-stressed cows in control, shade, and combined. The insights gained from these results could aid dairy producers to detect heat stress before it becomes severe, which could decrease the negative effects of heat stress, such as milk loss.

摘要

本研究旨在利用热应激评分系统,采用不同的降温技术,评估奶牛的热应激严重程度。评分系统范围从 1 到 4,其中 1 表示无热应激;2 表示轻度热应激;3 表示重度热应激;4 表示病危。然后,使用 3 种机器学习技术(逻辑回归、高斯朴素贝叶斯和随机森林)预测评分系统的准确性。为了预测评分系统的准确性,这些技术使用了温度-湿度指数、呼吸率、躺卧时间、躺卧次数、总步数、流口水、张口呼吸、喘气、在遮荫或喷淋处的位置、体细胞评分、反刍体温、卫生身体状况评分、产奶量以及乳脂和乳蛋白百分比等因素。考虑了 3 种不同的处理方法,即便携式遮阳结构、便携式聚氯乙烯管喷淋系统或不进行降温的对照处理,每个处理重复 3 次,有 3 头妊娠中期泌乳奶牛。结果表明,在预测喷淋组的得分方面,随机森林在准确性和精度方面均优于其他 2 种方法。逻辑回归和随机森林在预测对照组、遮阳组和联合组的得分方面是一致的。预测非热应激奶牛的平均概率最高的是喷淋组的奶牛。最后,逻辑回归方法最适合预测对照组、遮阳组和联合组的热应激奶牛。这些结果提供的见解可以帮助奶农在热应激变得严重之前发现它,从而减少热应激的负面影响,如产奶量下降。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验