文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于生物信息学分析鉴定溃疡性结肠炎差异表达基因,并在结肠炎小鼠模型中验证。

Identification of differentially expressed genes in ulcerative colitis and verification in a colitis mouse model by bioinformatics analyses.

机构信息

Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.

Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China.

出版信息

World J Gastroenterol. 2020 Oct 21;26(39):5983-5996. doi: 10.3748/wjg.v26.i39.5983.


DOI:10.3748/wjg.v26.i39.5983
PMID:33132649
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7584051/
Abstract

BACKGROUND: Ulcerative colitis (UC) is an inflammatory bowel disease that is difficult to diagnose and treat. To date, the degree of inflammation in patients with UC has mainly been determined by measuring the levels of nonspecific indicators, such as C-reactive protein and the erythrocyte sedimentation rate, but these indicators have an unsatisfactory specificity. In this study, we performed bioinformatics analysis using data from the National Center for Biotechnology Information-Gene Expression Omnibus (NCBI-GEO) databases and verified the selected core genes in a mouse model of dextran sulfate sodium (DSS)-induced colitis. AIM: To identify UC-related differentially expressed genes (DEGs) using a bioinformatics analysis and verify them and to identify novel biomarkers and the underlying mechanisms of UC. METHODS: Two microarray datasets from the NCBI-GEO database were used, and DEGs between patients with UC and healthy controls were analyzed using GEO2R and Venn diagrams. We annotated these genes based on their functions and signaling pathways, and then protein-protein interactions (PPIs) were identified using the Search Tool for the Retrieval of Interacting Genes. The data were further analyzed with Cytoscape software and the Molecular Complex Detection (MCODE) app. The core genes were selected and a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed. Finally, colitis model mice were established by administering DSS, and the top three core genes were verified in colitis mice using real-time polymerase chain reaction (PCR). RESULTS: One hundred and seventy-seven DEGs, 118 upregulated and 59 downregulated, were initially identified from the GEO2R analysis and predominantly participated in inflammation-related pathways. Seven clusters with close interactions in UC formed: Seventeen core genes were upregulated [ (), (), , , , , , , , , , , , , , ] and one was downregulated [ ()] in the top cluster according to the PPI and MCODE analyses. These genes were substantially enriched in the cytokine-cytokine receptor interaction and chemokine signaling pathways. The top three core genes (, , and ) were selected and verified in a mouse model of colitis using real-time PCR Increased expression was observed compared with the control mice, but only CXCR2 expression was significantly different. CONCLUSION: Core DEGs identified in UC are related to inflammation and immunity inflammation, indicating that these reactions are core features of the pathogenesis of UC. CXCR2 may reflect the degree of inflammation in patients with UC.

摘要

背景:溃疡性结肠炎(UC)是一种难以诊断和治疗的炎症性肠病。迄今为止,UC 患者的炎症程度主要通过测量 C-反应蛋白和红细胞沉降率等非特异性指标来确定,但这些指标的特异性并不令人满意。在这项研究中,我们使用国家生物技术信息中心基因表达综合数据库(NCBI-GEO)数据库中的数据进行了生物信息学分析,并在葡聚糖硫酸钠(DSS)诱导的结肠炎小鼠模型中验证了所选核心基因。

目的:使用生物信息学分析识别 UC 相关差异表达基因(DEG)并进行验证,并鉴定 UC 的新型生物标志物和潜在机制。

方法:使用 NCBI-GEO 数据库中的两个微阵列数据集,使用 GEO2R 和 Venn 图分析 UC 患者与健康对照之间的 DEG。我们根据功能和信号通路对这些基因进行注释,然后使用搜索工具检索相互作用基因(Search Tool for the Retrieval of Interacting Genes)识别蛋白质-蛋白质相互作用(PPI)。使用 Cytoscape 软件和分子复合物检测(MCODE)应用程序进一步分析数据。选择核心基因并进行京都基因与基因组百科全书通路富集分析。最后,通过给予 DSS 建立结肠炎模型小鼠,并使用实时聚合酶链反应(PCR)在结肠炎小鼠中验证前三个核心基因。

结果:从 GEO2R 分析中最初鉴定出 177 个 DEG,118 个上调和 59 个下调,主要参与炎症相关途径。根据 PPI 和 MCODE 分析,UC 中形成了 7 个具有紧密相互作用的簇:上调的 17 个核心基因 [(),(),,,,,,,,,,,,,]和一个下调的核心基因 [()] 位于顶部簇中。这些基因在细胞因子-细胞因子受体相互作用和趋化因子信号通路中显著富集。选择前三个核心基因(,和)并使用实时 PCR 在结肠炎小鼠模型中进行验证,与对照小鼠相比,观察到表达增加,但只有 CXCR2 表达差异显著。

结论:UC 中鉴定的核心 DEG 与炎症和免疫炎症有关,表明这些反应是 UC 发病机制的核心特征。CXCR2 可能反映 UC 患者的炎症程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f7/7584051/e556ed09ce7d/WJG-26-5983-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f7/7584051/44fbe3936873/WJG-26-5983-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f7/7584051/740a3189c98b/WJG-26-5983-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f7/7584051/caa6a203a979/WJG-26-5983-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f7/7584051/e556ed09ce7d/WJG-26-5983-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f7/7584051/44fbe3936873/WJG-26-5983-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f7/7584051/740a3189c98b/WJG-26-5983-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f7/7584051/caa6a203a979/WJG-26-5983-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f7/7584051/e556ed09ce7d/WJG-26-5983-g004.jpg

相似文献

[1]
Identification of differentially expressed genes in ulcerative colitis and verification in a colitis mouse model by bioinformatics analyses.

World J Gastroenterol. 2020-10-21

[2]
[Bioinformatic analysis of differentially expressed genes and Chinese medicine prediction for ulcerative colitis].

Zhongguo Zhong Yao Za Zhi. 2020-4

[3]
Identification of shared gene signatures and molecular mechanisms between chronic kidney disease and ulcerative colitis.

Front Immunol. 2023

[4]
Identification of differentially expressed genes, associated functional terms pathways, and candidate diagnostic biomarkers in inflammatory bowel diseases by bioinformatics analysis.

Exp Ther Med. 2019-7

[5]
Bioinformatics Analysis of Differentially Expressed Genes and Protein-Protein Interaction Networks Associated with Functional Pathways in Ulcerative Colitis.

Med Sci Monit. 2021-1-19

[6]
Identification of Differential Intestinal Mucosa Transcriptomic Biomarkers for Ulcerative Colitis by Bioinformatics Analysis.

Dis Markers. 2020

[7]
Investigation of Potential Genetic Biomarkers and Molecular Mechanism of Ulcerative Colitis Utilizing Bioinformatics Analysis.

Biomed Res Int. 2020-3-3

[8]
Evidence for the butyrate metabolism as key pathway improving ulcerative colitis in both pediatric and adult patients.

Bioengineered. 2021-12

[9]
Identification of Differentially Expressed Genes and miRNAs for Ulcerative Colitis Using Bioinformatics Analysis.

Front Genet. 2022-6-2

[10]
Integrated Analysis of Multiple Microarray Studies to Identify Novel Gene Signatures in Ulcerative Colitis.

Front Genet. 2021-7-9

引用本文的文献

[1]
Identification and experimental validation of ulcerative colitis-associated hub genes through integrated WGCNA and lysosomal autophagy analysis.

Hum Genomics. 2025-7-1

[2]
Exploring the bioactive properties and mechanism of in the treatment of inflammatory bowel disease through network pharmacology and a molecular docking approach.

Am J Transl Res. 2025-2-15

[3]
Transcriptomic Insights into the Molecular Mechanisms of Indole Analogues from the Extract and Their Therapeutic Effects on Ulcerative Colitis.

Animals (Basel). 2024-12-30

[4]
Multicohort study testing the generalisability of the SASKit-ML stroke and PDAC prognostic model pipeline to other chronic diseases.

BMJ Open. 2024-9-30

[5]
Evaluating the significance of ECSCR in the diagnosis of ulcerative colitis and drug efficacy assessment.

Front Immunol. 2024

[6]
Identification of Critical Genes Differentiating Stable and Unstable Atherosclerotic Plaques: A Bioinformatic and Computational Analysis.

Curr Vasc Pharmacol. 2024

[7]
Network pharmacology‑based investigation of potential targets of triptonodiol acting on non-small-cell lung cancer.

Eur J Med Res. 2023-11-28

[8]
Differential Impact of Smoking on Methylome and Transcriptome in Crohn's Disease and Ulcerative Colitis.

Inflamm Bowel Dis. 2024-6-3

[9]
Prediction of anti-TNF therapy failure in ulcerative colitis patients by ensemble machine learning: A prospective study.

Heliyon. 2023-10-18

[10]
Management of ulcerative colitis by dichloroacetate: Impact on NFATC1/NLRP3/IL1B signaling based on bioinformatics analysis combined with in vivo experimental verification.

Inflammopharmacology. 2024-2

本文引用的文献

[1]
Identification of differentially expressed genes regulated by methylation in colon cancer based on bioinformatics analysis.

World J Gastroenterol. 2019-7-14

[2]
Molecular Profiling of Inflammatory Bowel Disease: Is It Ready for Use in Clinical Decision-Making?

Cells. 2019-6-4

[3]
Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis.

J Ovarian Res. 2019-4-22

[4]
Colonic epithelial cell diversity in health and inflammatory bowel disease.

Nature. 2019-2-27

[5]
Chemical modification of neuropeptide Y for human Y1 receptor targeting in health and disease.

Biol Chem. 2019-2-25

[6]
Gene ontology enrichment analysis of congenital diaphragmatic hernia-associated genes.

Pediatr Res. 2018-9-25

[7]
Chemokines and Chemokine Receptors as Therapeutic Targets in Inflammatory Bowel Disease; Pitfalls and Promise.

J Crohns Colitis. 2018-8-22

[8]
Identifier Mapping in Cytoscape.

F1000Res. 2018-6-11

[9]
Current global trends in the incidence of pediatric-onset inflammatory bowel disease.

World J Gastroenterol. 2018-7-7

[10]
Practical guidance on the use of faecal calprotectin.

Frontline Gastroenterol. 2018-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索