Suppr超能文献

预测肾透明细胞癌总生存期的九种RNA结合蛋白特征的开发与验证

Development and Validation of Nine-RNA Binding Protein Signature Predicting Overall Survival for Kidney Renal Clear Cell Carcinoma.

作者信息

Zhong Weimin, Huang Chaoqun, Lin Jianqiong, Zhu Maoshu, Zhong Hongbin, Chiang Ming-Hsien, Chiang Huei-Shien, Hui Mei-Sau, Lin Yao, Huang Jiyi

机构信息

The Fifth Hospital of Xiamen, Xiamen, China.

Taiwan LinkMed Asia Public Health & Healthcare Management Research Association, Taipei, Taiwan.

出版信息

Front Genet. 2020 Oct 2;11:568192. doi: 10.3389/fgene.2020.568192. eCollection 2020.

Abstract

Cumulative studies have shown that RNA binding proteins (RBPs) play an important role in numerous malignant tumors and are related to the occurrence and progression of tumors. However, the role of RBPs in kidney renal clear cell carcinoma (KIRC) is not fully understood. In this study, we first downloaded gene expression data and corresponding clinical information of KIRC from the Cancer Genome Atlas (TCGA) database, International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) database, respectively. A total of 137 differentially expressed RBPs (DERBPs) were then identified between normal and tumor tissue, including 38 downregulated and 99 upregulated RBPs. Nine RBPs (EIF4A1, RPL36A, EXOSC5, RPL28, RPL13, RPS19, RPS2, EEF1A2, and OASL) were served as prognostic genes and exploited to construct a prognostic model through survival analysis. Kaplan-Meier curves analysis showed that the low-risk group had a better survival outcome when compared with the high-risk group. The area under the curve (AUC) value of the prognostic model was 0.713 in the TCGA data set (training data set), 0.706 in the ICGC data set, and 0.687 in the GSE29609 data set, respectively, confirming a good prognostic model. The prognostic model was also identified as an independent prognostic factor for KIRC survival by performing cox regression analysis. In addition, we also built a nomogram relying on age and the prognostic model and internal validation in the TCGA data set. The clinical benefit of the prognostic model was revealed by decision curve analysis (DCA). Gene set enrichment analysis revealed several crucial pathways (ERBB signaling pathway, pathways in cancer, MTOR signaling pathway, WNT signaling pathway, and TGF BETA signaling pathway) that may explain the underlying mechanisms of KIRC. Furthermore, potential drugs for KIRC treatment were predicted by the Connectivity Map (Cmap) database based on DERBPs, including several important drugs, such as depudecin and vorinostat, that could reverse KIRC gene expression, which may provide reference for the treatment of KIRC. In summary, we developed and validated a robust nine-RBP signature for KIRC prognosis prediction. A nomogram with risk score and age can be applied to promote the individualized prediction of overall survival in patients with KIRC. Moreover, the two drugs depudecin and vorinostat may contribute to KIRC treatment.

摘要

累积研究表明,RNA结合蛋白(RBPs)在众多恶性肿瘤中发挥着重要作用,且与肿瘤的发生和进展相关。然而,RBPs在肾透明细胞癌(KIRC)中的作用尚未完全明确。在本研究中,我们首先分别从癌症基因组图谱(TCGA)数据库、国际癌症基因组联盟(ICGC)和基因表达综合数据库(GEO)下载了KIRC的基因表达数据及相应临床信息。随后,在正常组织和肿瘤组织之间共鉴定出137个差异表达的RBPs(DERBPs),其中包括38个下调的和99个上调的RBPs。9个RBPs(EIF4A1、RPL36A、EXOSC5、RPL28、RPL13、RPS19、RPS2、EEF1A2和OASL)被用作预后基因,并通过生存分析构建了一个预后模型。Kaplan-Meier曲线分析表明,与高风险组相比,低风险组具有更好的生存结果。在TCGA数据集(训练数据集)中,预后模型的曲线下面积(AUC)值为0.713,在ICGC数据集中为0.706,在GSE29609数据集中为0.687,证实该预后模型良好。通过进行Cox回归分析,该预后模型也被确定为KIRC生存的独立预后因素。此外,我们还基于年龄和预后模型构建了列线图,并在TCGA数据集中进行了内部验证。决策曲线分析(DCA)揭示了该预后模型的临床益处。基因集富集分析揭示了几个关键通路(ERBB信号通路、癌症通路、MTOR信号通路、WNT信号通路和TGF BETA信号通路),这些通路可能解释了KIRC的潜在机制。此外,基于DERBPs通过连通图(Cmap)数据库预测了KIRC治疗的潜在药物,包括几种重要药物,如脱皮素和伏立诺他,它们可以逆转KIRC基因表达,这可能为KIRC的治疗提供参考。总之,我们开发并验证了一种用于KIRC预后预测的强大的九RBPs特征。一个包含风险评分和年龄的列线图可用于促进KIRC患者总生存的个体化预测。此外,脱皮素和伏立诺他这两种药物可能有助于KIRC的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d75/7566920/d59f2d84bdf3/fgene-11-568192-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验