Hafenstine Glenn R, Ma Ke, Harris Alexander W, Yehezkeli Omer, Park Eunsol, Domaille Dylan W, Cha Jennifer N, Goodwin Andrew P
Department of Chemical and Biological Engineering, University of Colorado Boulder, 3145 Colorado Ave., 596 UCB, Boulder, Colorado 80303, United States.
Department of Chemistry and Biochemistry, University of Colorado Boulder, 3145 Colorado Ave., 596 UCB, Boulder, Colorado 80303, United States.
ACS Catal. 2017;7(1):568-572. doi: 10.1021/acscatal.6b03213. Epub 2016 Dec 19.
Microbes produce low-molecular-weight alcohols from sugar, but these metabolites are difficult to separate from water and possess relatively low heating values. A combination of photo-, organo-, and enzyme catalysis is shown here to convert C butanol (BuOH) to C 2-ethylhexenal (2-EH) using only solar energy to drive the process. First, alcohol dehydrogenase (ADH) catalyzed the oxidation of BuOH to butyraldehyde (BA), using NAD as a cofactor. To prevent back reaction, NAD+ was regenerated using a platinum-seeded cadmium sulfide (Pt@CdS) photocatalyst. An amine-based organocatalyst then upgraded BA to 2-EH under mild aqueous conditions rather than harsh basic conditions in order to preserve enzyme and photocatalyst stability. The process also simultaneously increased total BuOH conversion. Thus, three disparate types of catalysts synergistically generated C products from C alcohols under green chemistry conditions of neutral pH, low temperature, and pressure.
微生物可从糖中产生低分子量醇类,但这些代谢产物难以与水分离,且具有相对较低的热值。本文展示了一种光催化、有机催化和酶催化相结合的方法,仅利用太阳能驱动该过程,将丁醇(BuOH)转化为2-乙基己烯醛(2-EH)。首先,醇脱氢酶(ADH)以烟酰胺腺嘌呤二核苷酸(NAD)作为辅因子,催化丁醇氧化为丁醛(BA)。为防止逆向反应,使用铂负载的硫化镉(Pt@CdS)光催化剂再生NAD+。然后,一种胺基有机催化剂在温和的水性条件下,而非苛刻的碱性条件下,将丁醛升级为2-乙基己烯醛,以保持酶和光催化剂的稳定性。该过程同时还提高了丁醇的总转化率。因此,在中性pH、低温和常压的绿色化学条件下,三种不同类型的催化剂协同作用,从丁醇生成了碳产物。