Suppr超能文献

基于虚拟筛选策略发现抗新型冠状病毒3CL蛋白酶的潜在黄酮类抑制剂

Discovery of Potential Flavonoid Inhibitors Against COVID-19 3CL Proteinase Based on Virtual Screening Strategy.

作者信息

Xu Zhongren, Yang Lixiang, Zhang Xinghao, Zhang Qiling, Yang Zhibin, Liu Yuanhao, Wei Shuang, Liu Wukun

机构信息

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine and Holistic Integrative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.

Shenzhen Bay Laboratory, Shenzhen, China.

出版信息

Front Mol Biosci. 2020 Sep 29;7:556481. doi: 10.3389/fmolb.2020.556481. eCollection 2020.

Abstract

The outbreak of 2019 novel coronavirus (COVID-19) has caused serious threat to public health. Discovery of new anti-COVID-19 drugs is urgently needed. Fortunately, the crystal structure of COVID-19 3CL proteinase was recently resolved. The proteinase has been identified as a promising target for drug discovery in this crisis. Here, a dataset including 2030 natural compounds was screened and refined based on the machine learning and molecular docking. The performance of six machine learning (ML) methods of predicting active coronavirus inhibitors had achieved satisfactory accuracy, especially, the AUC (Area Under ROC Curve) scores with fivefold cross-validation of Logistic Regression (LR) reached up to 0.976. Comprehensive ML prediction and molecular docking results accounted for the compound Rutin, which was approved by NMPA (National Medical Products Administration), exhibited the best AUC and the most promising binding affinity compared to other compounds. Therefore, Rutin might be a promising agent in anti-COVID-19 drugs development.

摘要

2019新型冠状病毒(COVID-19)的爆发对公众健康造成了严重威胁。迫切需要发现新的抗COVID-19药物。幸运的是,COVID-19 3CL蛋白酶的晶体结构最近得到了解析。在这场危机中,该蛋白酶已被确定为药物研发的一个有前景的靶点。在此,基于机器学习和分子对接筛选并优化了一个包含2030种天然化合物的数据集。六种预测活性冠状病毒抑制剂的机器学习(ML)方法的性能达到了令人满意的准确率,特别是,逻辑回归(LR)五重交叉验证的AUC(ROC曲线下面积)得分高达0.976。综合的ML预测和分子对接结果表明,与其他化合物相比,经国家药品监督管理局(NMPA)批准的化合物芦丁表现出最佳的AUC和最有前景的结合亲和力。因此,芦丁可能是抗COVID-19药物研发中有前景的药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1e/7561382/64321178a4f3/fmolb-07-556481-g001.jpg

相似文献

1
Discovery of Potential Flavonoid Inhibitors Against COVID-19 3CL Proteinase Based on Virtual Screening Strategy.
Front Mol Biosci. 2020 Sep 29;7:556481. doi: 10.3389/fmolb.2020.556481. eCollection 2020.
2
Discovery of anti-SARS coronavirus drug based on molecular docking and database screening.
Chin J Chem. 2004 Aug;22(8):882-887. doi: 10.1002/cjoc.20040220825. Epub 2010 Aug 26.
5
A combined drug discovery strategy based on machine learning and molecular docking.
Chem Biol Drug Des. 2019 May;93(5):685-699. doi: 10.1111/cbdd.13494. Epub 2019 Mar 7.
6
Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24.
Comput Biol Med. 2019 Oct;113:103414. doi: 10.1016/j.compbiomed.2019.103414. Epub 2019 Aug 28.
7
Virtual Screening Strategy Combined Bayesian Classification Model, Molecular Docking for Acetyl-CoA Carboxylases Inhibitors.
Curr Comput Aided Drug Des. 2019;15(3):193-205. doi: 10.2174/1573409914666181109110030.
9
Computational screening of known broad-spectrum antiviral small organic molecules for potential influenza HA stem inhibitors.
PLoS One. 2018 Sep 4;13(9):e0203148. doi: 10.1371/journal.pone.0203148. eCollection 2018.

引用本文的文献

4
Staying Ahead of the Game: How SARS-CoV-2 has Accelerated the Application of Machine Learning in Pandemic Management.
BioDrugs. 2023 Sep;37(5):649-674. doi: 10.1007/s40259-023-00611-8. Epub 2023 Jul 18.
5
Computational investigation on the antioxidant activities and on the M SARS-CoV-2 non-covalent inhibition of isorhamnetin.
Front Chem. 2023 Jan 24;11:1122880. doi: 10.3389/fchem.2023.1122880. eCollection 2023.
7
Further quantitative in silico analysis of SARS-CoV-2 S-RBD Omicron BA.4, BA.5, BA.2.75, BQ.1, and BQ.1.1 transmissibility.
Talanta. 2023 Mar 1;254:124127. doi: 10.1016/j.talanta.2022.124127. Epub 2022 Nov 23.
8
Repositioning of anti-dengue compounds against SARS-CoV-2 as viral polyprotein processing inhibitor.
PLoS One. 2022 Nov 16;17(11):e0277328. doi: 10.1371/journal.pone.0277328. eCollection 2022.

本文引用的文献

1
Core Outcome Set for Clinical Trials of COVID-19 Based on Traditional Chinese and Western Medicine.
Front Pharmacol. 2020 May 25;11:781. doi: 10.3389/fphar.2020.00781. eCollection 2020.
3
Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV.
J Microbiol Immunol Infect. 2020 Jun;53(3):365-367. doi: 10.1016/j.jmii.2020.02.001. Epub 2020 Feb 4.
4
What to do next to control the 2019-nCoV epidemic?
Lancet. 2020 Feb 8;395(10222):391-393. doi: 10.1016/S0140-6736(20)30300-7.
5
[Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia].
Zhonghua Jie He He Hu Xi Za Zhi. 2020 Feb 6;43(0):E005. doi: 10.3760/cma.j.issn.1001-0939.2020.0005.
6
Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission.
Sci China Life Sci. 2020 Mar;63(3):457-460. doi: 10.1007/s11427-020-1637-5. Epub 2020 Jan 21.
7
Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan.
Emerg Microbes Infect. 2020 Jan 28;9(1):221-236. doi: 10.1080/22221751.2020.1719902. eCollection 2020.
8
A Novel Coronavirus from Patients with Pneumonia in China, 2019.
N Engl J Med. 2020 Feb 20;382(8):727-733. doi: 10.1056/NEJMoa2001017. Epub 2020 Jan 24.
9
Evaluation of an octahydroisochromene scaffold used as a novel SARS 3CL protease inhibitor.
Bioorg Med Chem. 2020 Feb 15;28(4):115273. doi: 10.1016/j.bmc.2019.115273. Epub 2019 Dec 30.
10
Antiviral effect of Chinese herbal prescription JieZe-1 on adhesion and penetration of VK2/E6E7 with herpes simplex viruses type 2.
J Ethnopharmacol. 2020 Mar 1;249:112405. doi: 10.1016/j.jep.2019.112405. Epub 2019 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验