Suppr超能文献

转录因子如何解读顺式调控密码的七个误区。

Seven myths of how transcription factors read the cis-regulatory code.

作者信息

Zeitlinger Julia

机构信息

Stowers Institute for Medical Research, Kansas City, MO, USA.

The University of Kansas Medical Center, Kansas City, KS, USA.

出版信息

Curr Opin Syst Biol. 2020 Oct;23:22-31. doi: 10.1016/j.coisb.2020.08.002. Epub 2020 Sep 4.

Abstract

Genomics data are now being generated at large quantities, of exquisite high resolution and from single cells. They offer a unique opportunity to develop powerful machine learning algorithms, including neural networks, to uncover the rules of the cis-regulatory code. However, current modeling assumptions are often not based on state-of-the-art knowledge of the cis-regulatory code from transcription, developmental genetics, imaging and structural studies. Here I aim to fill this gap by giving a brief historical overview of the field, describing common misconceptions and providing knowledge that might help to guide computational approaches. I will describe the principles and mechanisms involved in the combinatorial requirement of transcription factor binding motifs for enhancer activity, including the role of chromatin accessibility, repressors and low-affinity motifs in the cis-regulatory code. Deciphering the cis-regulatory code would unlock an enormous amount of regulatory information in the genome and would allow us to locate cis-regulatory genetic variants involved in development and disease.

摘要

基因组学数据如今正以前所未有的高分辨率大量生成,且来自单细胞。它们为开发强大的机器学习算法(包括神经网络)提供了独特机遇,以揭示顺式调控密码的规则。然而,当前的建模假设往往并非基于转录、发育遗传学、成像和结构研究中关于顺式调控密码的最新知识。在此,我旨在通过简要回顾该领域的历史、描述常见误解并提供可能有助于指导计算方法的知识来填补这一空白。我将描述转录因子结合基序对增强子活性的组合需求所涉及的原理和机制,包括染色质可及性、阻遏物和低亲和力基序在顺式调控密码中的作用。解读顺式调控密码将解锁基因组中大量的调控信息,并使我们能够定位参与发育和疾病的顺式调控基因变异。

相似文献

1
Seven myths of how transcription factors read the cis-regulatory code.
Curr Opin Syst Biol. 2020 Oct;23:22-31. doi: 10.1016/j.coisb.2020.08.002. Epub 2020 Sep 4.
2
The dynamic, combinatorial cis-regulatory lexicon of epidermal differentiation.
Nat Genet. 2021 Nov;53(11):1564-1576. doi: 10.1038/s41588-021-00947-3. Epub 2021 Oct 14.
3
Base-resolution models of transcription-factor binding reveal soft motif syntax.
Nat Genet. 2021 Mar;53(3):354-366. doi: 10.1038/s41588-021-00782-6. Epub 2021 Feb 18.
5
Hold out the genome: a roadmap to solving the cis-regulatory code.
Nature. 2024 Jan;625(7993):41-50. doi: 10.1038/s41586-023-06661-w. Epub 2023 Dec 13.
6
Deciphering a transcriptional regulatory code: modeling short-range repression in the Drosophila embryo.
Mol Syst Biol. 2010;6:341. doi: 10.1038/msb.2009.97. Epub 2010 Jan 19.
7
Transcriptional regulation in plants: Using omics data to crack the cis-regulatory code.
Curr Opin Plant Biol. 2021 Oct;63:102058. doi: 10.1016/j.pbi.2021.102058. Epub 2021 Jun 5.
9
Deciphering the transcriptional cis-regulatory code.
Trends Genet. 2013 Jan;29(1):11-22. doi: 10.1016/j.tig.2012.09.007. Epub 2012 Oct 23.
10
Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay.
Genome Res. 2013 May;23(5):800-11. doi: 10.1101/gr.144899.112. Epub 2013 Mar 19.

引用本文的文献

1
Transcriptional regulation as a dose-dependent process: insights from transcription factor tuning.
Open Biol. 2025 Aug;15(8):240328. doi: 10.1098/rsob.240328. Epub 2025 Aug 6.
3
Evaluating the representational power of pre-trained DNA language models for regulatory genomics.
Genome Biol. 2025 Jul 14;26(1):203. doi: 10.1186/s13059-025-03674-8.
4
Perspective on recent developments and challenges in regulatory and systems genomics.
Bioinform Adv. 2025 May 9;5(1):vbaf106. doi: 10.1093/bioadv/vbaf106. eCollection 2025.
5
Interpreting regulatory mechanisms of Hippo signaling through a deep learning sequence model.
Cell Genom. 2025 Apr 9;5(4):100821. doi: 10.1016/j.xgen.2025.100821. Epub 2025 Apr 1.
6
A gene regulatory network for specification and morphogenesis of a Mauthner Cell homolog in non-vertebrate chordates.
Dev Biol. 2025 Jun;522:51-63. doi: 10.1016/j.ydbio.2025.03.007. Epub 2025 Mar 15.
7
Multi-locus CRISPRi targeting with a single truncated guide RNA.
Nat Commun. 2025 Feb 4;16(1):1357. doi: 10.1038/s41467-025-56144-x.
8
Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.
iScience. 2024 Dec 20;28(1):111658. doi: 10.1016/j.isci.2024.111658. eCollection 2025 Jan 17.

本文引用的文献

1
Base-resolution models of transcription-factor binding reveal soft motif syntax.
Nat Genet. 2021 Mar;53(3):354-366. doi: 10.1038/s41588-021-00782-6. Epub 2021 Feb 18.
3
Systematic identification of silencers in human cells.
Nat Genet. 2020 Mar;52(3):254-263. doi: 10.1038/s41588-020-0578-5. Epub 2020 Feb 24.
4
Incorporating biological structure into machine learning models in biomedicine.
Curr Opin Biotechnol. 2020 Jun;63:126-134. doi: 10.1016/j.copbio.2019.12.021. Epub 2020 Jan 18.
5
TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage.
Development. 2019 Sep 6;146(17):dev179861. doi: 10.1242/dev.179861.
6
Enhancer Features that Drive Formation of Transcriptional Condensates.
Mol Cell. 2019 Aug 8;75(3):549-561.e7. doi: 10.1016/j.molcel.2019.07.009.
8
Multi-enhancer transcriptional hubs confer phenotypic robustness.
Elife. 2019 Jul 11;8:e45325. doi: 10.7554/eLife.45325.
9
Deep learning: new computational modelling techniques for genomics.
Nat Rev Genet. 2019 Jul;20(7):389-403. doi: 10.1038/s41576-019-0122-6.
10
Continued Activity of the Pioneer Factor Zelda Is Required to Drive Zygotic Genome Activation.
Mol Cell. 2019 Apr 4;74(1):185-195.e4. doi: 10.1016/j.molcel.2019.01.014. Epub 2019 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验