Suppr超能文献

肌球蛋白 II 的机械化学功能:恢复行程和 ATP 水解的研究。

Mechanochemical Function of Myosin II: Investigation into the Recovery Stroke and ATP Hydrolysis.

机构信息

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States.

Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States.

出版信息

J Phys Chem B. 2020 Nov 12;124(45):10014-10023. doi: 10.1021/acs.jpcb.0c05762. Epub 2020 Nov 2.

Abstract

Myosin regulates muscle function through a complex cycle of conformational rearrangements coupled with the hydrolysis of adenosine triphosphate (ATP). The recovery stroke reorganizes the myosin active site to hydrolyze ATP and cross bridge with the thin filament to produce muscle contraction. Engineered mutations K84M and R704E in myosin have been designed to specifically inhibit the recovery stroke and have been shown to indirectly affect the ATPase activity of myosin. We investigated these mutagenic perturbations to the recovery stroke and generated thermodynamically correct and unbiased trajectories for native ATP hydrolysis with computationally enhanced sampling methods. Our methodology was able to resolve experimentally observed changes to kinetic and equilibrium dynamics for the recovery stroke with the correct prediction in the severity of these changes. For ATP hydrolysis, the sequential nature along with the stabilization of a metaphosphate intermediate was observed in agreement with previous studies. However, we observed glutamate 459 being utilized as a proton abstractor to prime the attacking water instead of a lytic water, a phenomenon not well categorized in myosin but has in other ATPases. Both rare event methodologies can be extended to human myosin to investigate isoformic differences from and scan cardiomyopathic mutations to see differential perturbations to kinetics of other conformational changes in myosin such as the power stroke.

摘要

肌球蛋白通过与三磷酸腺苷 (ATP) 水解偶联的复杂构象重排循环来调节肌肉功能。恢复冲程重新组织肌球蛋白活性位点以水解 ATP 并与细肌丝交联,从而产生肌肉收缩。设计了肌球蛋白中的工程突变 K84M 和 R704E,以特异性抑制恢复冲程,并已证明它们会间接影响肌球蛋白的 ATP 酶活性。我们研究了这些对恢复冲程的诱变干扰,并使用计算增强采样方法为天然 ATP 水解生成热力学正确且无偏的轨迹。我们的方法能够解决恢复冲程中实验观察到的动力学和平衡动力学变化,并正确预测这些变化的严重程度。对于 ATP 水解,我们观察到与先前研究一致的沿顺序性质以及焦磷酸盐中间物的稳定化。然而,我们观察到谷氨酸 459 被用作质子供体来引发进攻水而不是水解水,这一现象在肌球蛋白中没有很好地分类,但在其他 ATP 酶中存在。这两种稀有事件方法都可以扩展到人类肌球蛋白,以研究同工型差异,并扫描心肌病突变,以观察肌球蛋白中其他构象变化(如动力冲程)的动力学的差异干扰。

相似文献

1
Mechanochemical Function of Myosin II: Investigation into the Recovery Stroke and ATP Hydrolysis.
J Phys Chem B. 2020 Nov 12;124(45):10014-10023. doi: 10.1021/acs.jpcb.0c05762. Epub 2020 Nov 2.
3
Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke.
J Mol Biol. 2006 Aug 18;361(3):604-16. doi: 10.1016/j.jmb.2006.06.022. Epub 2006 Jun 30.
4
Extensive conformational transitions are required to turn on ATP hydrolysis in myosin.
J Mol Biol. 2008 Sep 19;381(5):1407-20. doi: 10.1016/j.jmb.2008.06.071. Epub 2008 Jul 1.
5
Regulation and Plasticity of Catalysis in Enzymes: Insights from Analysis of Mechanochemical Coupling in Myosin.
Biochemistry. 2017 Mar 14;56(10):1482-1497. doi: 10.1021/acs.biochem.7b00016. Epub 2017 Mar 1.
8
9
Structural mechanism of the recovery stroke in the myosin molecular motor.
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6873-8. doi: 10.1073/pnas.0408784102. Epub 2005 Apr 29.
10
A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis.
PLoS Comput Biol. 2024 Apr 25;20(4):e1012005. doi: 10.1371/journal.pcbi.1012005. eCollection 2024 Apr.

引用本文的文献

1
Human cardiac β-myosin powerstroke energetics: Thin filament, Pi displacement, and mutation effects.
Biophys J. 2024 Sep 17;123(18):3133-3142. doi: 10.1016/j.bpj.2024.07.012. Epub 2024 Jul 22.
2
Myosin-Catalyzed ATP Hydrolysis in the Presence of Disease-Causing Mutations: Mavacamten as a Way to Repair Mechanism.
J Phys Chem B. 2024 May 16;128(19):4716-4727. doi: 10.1021/acs.jpcb.4c01601. Epub 2024 May 6.
3
A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis.
PLoS Comput Biol. 2024 Apr 25;20(4):e1012005. doi: 10.1371/journal.pcbi.1012005. eCollection 2024 Apr.
4
Binding pocket dynamics along the recovery stroke of human β-cardiac myosin.
PLoS Comput Biol. 2023 May 18;19(5):e1011099. doi: 10.1371/journal.pcbi.1011099. eCollection 2023 May.
5
Insights into the Mechanism of the Cardiac Drug Omecamtiv Mecarbil─A Computational Study.
J Phys Chem B. 2022 Dec 8;126(48):10069-10082. doi: 10.1021/acs.jpcb.2c06679. Epub 2022 Nov 29.
6
Free-Energy Surfaces of Two Cardiac Thin Filament Conformational Changes during Muscle Contraction.
J Phys Chem B. 2022 Jun 2;126(21):3844-3851. doi: 10.1021/acs.jpcb.2c01337. Epub 2022 May 18.
7
Clinical Effects of Acupuncture for Stroke Patients Recovery.
J Healthc Eng. 2022 Feb 14;2022:9962421. doi: 10.1155/2022/9962421. eCollection 2022.

本文引用的文献

1
Examining the Origin of Catalytic Power of Catechol O-Methyltransferase.
ACS Catal. 2019 Nov 1;9(11):9870-9879. doi: 10.1021/acscatal.9b02657. Epub 2019 Sep 17.
2
Molecular Mechanism of ATP Hydrolysis in an ABC Transporter.
ACS Cent Sci. 2018 Oct 24;4(10):1334-1343. doi: 10.1021/acscentsci.8b00369. Epub 2018 Oct 5.
3
Motor Proteins.
Cold Spring Harb Perspect Biol. 2018 May 1;10(5):a021931. doi: 10.1101/cshperspect.a021931.
4
HCM and DCM cardiomyopathy-linked α-tropomyosin mutations influence off-state stability and crossbridge interaction on thin filaments.
Arch Biochem Biophys. 2018 Jun 1;647:84-92. doi: 10.1016/j.abb.2018.04.002. Epub 2018 Apr 5.
5
Regulation and Plasticity of Catalysis in Enzymes: Insights from Analysis of Mechanochemical Coupling in Myosin.
Biochemistry. 2017 Mar 14;56(10):1482-1497. doi: 10.1021/acs.biochem.7b00016. Epub 2017 Mar 1.
6
How Myosin Generates Force on Actin Filaments.
Trends Biochem Sci. 2016 Dec;41(12):989-997. doi: 10.1016/j.tibs.2016.09.006. Epub 2016 Oct 4.
7
Thin Filament Structure and the Steric Blocking Model.
Compr Physiol. 2016 Mar 15;6(2):1043-69. doi: 10.1002/cphy.c150030.
8
The Relay/Converter Interface Influences Hydrolysis of ATP by Skeletal Muscle Myosin II.
J Biol Chem. 2016 Jan 22;291(4):1763-1773. doi: 10.1074/jbc.M115.688002. Epub 2015 Nov 19.
9
Advances in quantum simulations of ATPase catalysis in the myosin motor.
Curr Opin Struct Biol. 2015 Apr;31:115-23. doi: 10.1016/j.sbi.2015.04.006. Epub 2015 May 22.
10
Catalytic strategy used by the myosin motor to hydrolyze ATP.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2947-56. doi: 10.1073/pnas.1401862111. Epub 2014 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验