Suppr超能文献

非空间特征减少了对持续空间听觉注意力的依赖。

Nonspatial Features Reduce the Reliance on Sustained Spatial Auditory Attention.

作者信息

Bonacci Lia M, Bressler Scott, Shinn-Cunningham Barbara G

机构信息

Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.

Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

出版信息

Ear Hear. 2020 Nov/Dec;41(6):1635-1647. doi: 10.1097/AUD.0000000000000879.

Abstract

OBJECTIVE

Top-down spatial attention is effective at selecting a target sound from a mixture. However, nonspatial features often distinguish sources in addition to location. This study explores whether redundant nonspatial features are used to maintain selective auditory attention for a spatially defined target.

DESIGN

We recorded electroencephalography while subjects focused attention on one of three simultaneous melodies. In one experiment, subjects (n = 17) were given an auditory cue indicating both the location and pitch of the target melody. In a second experiment (n = 17 subjects), the cue only indicated target location, and we compared two conditions: one in which the pitch separation of competing melodies was large, and one in which this separation was small.

RESULTS

In both experiments, responses evoked by onsets of events in sound streams were modulated by attention, and we found no significant difference in this modulation between small and large pitch separation conditions. Therefore, the evoked response reflected that target stimuli were the focus of attention, and distractors were suppressed successfully for all experimental conditions. In all cases, parietal alpha was lateralized following the cue, but before melody onset, indicating that subjects initially focused attention in space. During the stimulus presentation, this lateralization disappeared when pitch cues were strong but remained significant when pitch cues were weak, suggesting that strong pitch cues reduced reliance on sustained spatial attention.

CONCLUSIONS

These results demonstrate that once a well-defined target stream at a known location is selected, top-down spatial attention plays a weak role in filtering out a segregated competing stream.

摘要

目的

自上而下的空间注意力能够有效地从混合声音中选择目标声音。然而,除了位置之外,非空间特征通常也能区分声源。本研究探讨了冗余的非空间特征是否被用于维持对空间定义目标的选择性听觉注意力。

设计

我们在受试者将注意力集中于三个同时播放的旋律之一时记录脑电图。在一个实验中,向受试者(n = 17)提供一个听觉提示,指明目标旋律的位置和音高。在第二个实验(n = 17名受试者)中,提示仅指明目标位置,我们比较了两种情况:一种是竞争旋律的音高间隔大,另一种是音高间隔小。

结果

在两个实验中,声音流中事件起始所诱发的反应均受到注意力的调制,并且我们发现在小音高间隔和大音高间隔条件之间,这种调制没有显著差异。因此,诱发反应反映出目标刺激是注意力的焦点,并且在所有实验条件下干扰物都被成功抑制。在所有情况下,顶叶阿尔法波在提示之后、旋律起始之前出现偏侧化,表明受试者最初将注意力集中在空间上。在刺激呈现期间,当音高提示强烈时这种偏侧化消失,但当音高提示微弱时仍然显著,这表明强烈的音高提示减少了对持续空间注意力的依赖。

结论

这些结果表明,一旦在已知位置选择了一个明确界定的目标声音流,自上而下的空间注意力在滤除一个分离的竞争声音流方面作用微弱。

相似文献

1
Nonspatial Features Reduce the Reliance on Sustained Spatial Auditory Attention.
Ear Hear. 2020 Nov/Dec;41(6):1635-1647. doi: 10.1097/AUD.0000000000000879.
2
Differential cortical processing of location and pitch changes in dichotic pitch.
Neuroreport. 2006 Mar 20;17(4):389-93. doi: 10.1097/01.wnr.0000203358.72814.df.
3
Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7602-E7611. doi: 10.1073/pnas.1707522114. Epub 2017 Aug 21.
4
Disentangling the effects of spatial cues on selection and formation of auditory objects.
J Acoust Soc Am. 2008 Oct;124(4):2224-35. doi: 10.1121/1.2973185.
5
Weak neural signatures of spatial selective auditory attention in hearing-impaired listeners.
J Acoust Soc Am. 2019 Oct;146(4):2577. doi: 10.1121/1.5129055.
6
Top-down controlled and bottom-up triggered orienting of auditory attention to pitch activate overlapping brain networks.
Brain Res. 2015 Nov 11;1626:136-45. doi: 10.1016/j.brainres.2014.12.050. Epub 2014 Dec 31.
7
Auditory spatial and object processing in the human planum temporale: no evidence for selectivity.
J Cogn Neurosci. 2010 Apr;22(4):632-9. doi: 10.1162/jocn.2009.21196.
8
Impoverished auditory cues limit engagement of brain networks controlling spatial selective attention.
Neuroimage. 2019 Nov 15;202:116151. doi: 10.1016/j.neuroimage.2019.116151. Epub 2019 Sep 4.
9
ARTSTREAM: a neural network model of auditory scene analysis and source segregation.
Neural Netw. 2004 May;17(4):511-36. doi: 10.1016/j.neunet.2003.10.002.
10
Lateralization of frequency-specific networks for covert spatial attention to auditory stimuli.
Brain Topogr. 2012 Jan;25(1):39-54. doi: 10.1007/s10548-011-0186-x. Epub 2011 Jun 1.

引用本文的文献

1
The multidimensional relationship between alpha oscillations and cognition.
Imaging Neurosci (Camb). 2025 Aug 4;3. doi: 10.1162/IMAG.a.96. eCollection 2025.
2
The Slowest Timescales of Neural Synchronization Reveal the Strongest Influence of Auditory Distraction.
bioRxiv. 2025 May 5:2025.05.05.652235. doi: 10.1101/2025.05.05.652235.
3
Electromyographic correlates of effortful listening in the vestigial auriculomotor system.
Front Neurosci. 2025 Jan 31;18:1462507. doi: 10.3389/fnins.2024.1462507. eCollection 2024.
5
Defining attention from an auditory perspective.
Wiley Interdiscip Rev Cogn Sci. 2023 Jan;14(1):e1610. doi: 10.1002/wcs.1610. Epub 2022 Jun 1.
6
Neural attentional-filter mechanisms of listening success in middle-aged and older individuals.
Nat Commun. 2021 Jul 26;12(1):4533. doi: 10.1038/s41467-021-24771-9.
7
Unilateral Acoustic Degradation Delays Attentional Separation of Competing Speech.
Trends Hear. 2021 Jan-Dec;25:23312165211013242. doi: 10.1177/23312165211013242.
8
Orienting auditory attention in time: Lateralized alpha power reflects spatio-temporal filtering.
Neuroimage. 2021 Mar;228:117711. doi: 10.1016/j.neuroimage.2020.117711. Epub 2020 Dec 29.
10
Causal links between parietal alpha activity and spatial auditory attention.
Elife. 2019 Nov 29;8:e51184. doi: 10.7554/eLife.51184.

本文引用的文献

1
Causal links between parietal alpha activity and spatial auditory attention.
Elife. 2019 Nov 29;8:e51184. doi: 10.7554/eLife.51184.
2
Perceptual grouping in the cocktail party: Contributions of voice-feature continuity.
J Acoust Soc Am. 2018 Oct;144(4):2178. doi: 10.1121/1.5058684.
3
Influence of talker discontinuity on cortical dynamics of auditory spatial attention.
Neuroimage. 2018 Oct 1;179:548-556. doi: 10.1016/j.neuroimage.2018.06.067. Epub 2018 Jun 28.
4
Sensorineural hearing loss degrades behavioral and physiological measures of human spatial selective auditory attention.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):E3286-E3295. doi: 10.1073/pnas.1721226115. Epub 2018 Mar 19.
5
6
Sensory-Biased and Multiple-Demand Processing in Human Lateral Frontal Cortex.
J Neurosci. 2017 Sep 6;37(36):8755-8766. doi: 10.1523/JNEUROSCI.0660-17.2017. Epub 2017 Aug 8.
7
Neural decoding of attentional selection in multi-speaker environments without access to clean sources.
J Neural Eng. 2017 Oct;14(5):056001. doi: 10.1088/1741-2552/aa7ab4. Epub 2017 Aug 4.
8
Sensory coding and cognitive processing of sound in Veterans with blast exposure.
Hear Res. 2017 Jun;349:98-110. doi: 10.1016/j.heares.2016.10.018. Epub 2016 Nov 2.
9
EEG-Informed Attended Speaker Extraction From Recorded Speech Mixtures With Application in Neuro-Steered Hearing Prostheses.
IEEE Trans Biomed Eng. 2017 May;64(5):1045-1056. doi: 10.1109/TBME.2016.2587382. Epub 2016 Jul 7.
10
Spatiotemporal dynamics of auditory attention synchronize with speech.
Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):3873-8. doi: 10.1073/pnas.1523357113. Epub 2016 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验