Department of Internal Medicine, University of California, Irvine School of Medicine, Orange, CA, USA; Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
Clin Neurophysiol. 2020 Dec;131(12):2817-2825. doi: 10.1016/j.clinph.2020.08.015. Epub 2020 Sep 11.
Postictal generalized electroencephalographic suppression (PGES) is a pattern of low-voltage scalp electroencephalographic (EEG) activity following termination of generalized seizures. PGES has been associated with both sudden unexplained death in patients with epilepsy and therapeutic efficacy of electroconvulsive therapy (ECT). Automated detection of PGES epochs may aid in reliable quantification of this phenomenon.
We developed a voltage-based algorithm for detecting PGES. This algorithm applies existing criteria to simulate expert epileptologist readings. Validation relied on postictal EEG recording from patients undergoing ECT (NCT02761330), assessing concordance among the algorithm and four clinical epileptologists.
We observed low-to-moderate concordance among epileptologist ratings of PGES. Despite this, the algorithm displayed high discriminability in comparison to individual epileptologists (C-statistic range: 0.86-0.92). The algorithm displayed high discrimination (C-statistic: 0.91) and substantial peak agreement (Cohen's Kappa: 0.65) in comparison to a consensus of clinical ratings. Interrater agreement between the algorithm and individual epileptologists was on par with that among expert epileptologists.
An automated voltage-based algorithm can be used to detect PGES following ECT, with discriminability nearing that of experts.
Algorithmic detection may support clinical readings of PGES and improve precision when correlating this marker with clinical outcomes following generalized seizures.
癫痫发作后广泛脑电图抑制(PGES)是一种在全身性癫痫发作终止后出现的低电压头皮脑电图(EEG)活动模式。PGES 与癫痫患者的突发性不明原因死亡和电惊厥治疗(ECT)的疗效均有关。PGES 时段的自动检测可能有助于可靠地量化这种现象。
我们开发了一种基于电压的 PGES 检测算法。该算法应用现有标准模拟专家癫痫学家的阅读。验证依赖于接受 ECT 的患者的癫痫发作后 EEG 记录(NCT02761330),评估算法与四位临床癫痫学家之间的一致性。
我们观察到癫痫学家对 PGES 的评分存在低到中度的一致性。尽管如此,与个别癫痫学家相比,该算法具有较高的辨别力(C 统计范围:0.86-0.92)。与临床评分共识相比,该算法具有较高的判别力(C 统计量:0.91)和显著的峰一致性(Cohen's Kappa:0.65)。算法与个别癫痫学家之间的组内一致性与专家癫痫学家之间的一致性相当。
基于电压的自动算法可用于检测 ECT 后的 PGES,其辨别力接近专家水平。
算法检测可能支持 PGES 的临床读数,并在将该标志物与全身性癫痫发作后的临床结果相关联时提高精度。