IEEE Trans Biomed Eng. 2018 Feb;65(2):371-377. doi: 10.1109/TBME.2017.2771468.
Although there is no strict consensus, some studies have reported that Postictal generalized EEG suppression (PGES) is a potential electroencephalographic (EEG) biomarker for risk of sudden unexpected death in epilepsy (SUDEP). PGES is an epoch of EEG inactivity after a seizure, and the detection of PGES in clinical data is extremely difficult due to artifacts from breathing, movement and muscle activity that can adversely affect the quality of the recorded EEG data. Even clinical experts visually interpreting the EEG will have diverse opinions on the start and end of PGES for a given patient. The development of an automated EEG suppression detection tool can assist clinical personnel in the review and annotation of seizure files, and can also provide a standard for quantifying PGES in large patient cohorts, possibly leading to further clarification of the role of PGES as a biomarker of SUDEP risk. In this paper, we develop an automated system that can detect the start and end of PGES using frequency domain features in combination with boosting classification algorithms. The average power for different frequency ranges of EEG signals are extracted from the prefiltered recorded signal using the fast fourier transform and are used as the feature set for the classification algorithm. The underlying classifiers for the boosting algorithm are linear classifiers using a logistic regression model. The tool is developed using 12 seizures annotated by an expert then tested and evaluated on another 20 seizures that were annotated by 11 experts.
虽然没有严格的共识,但一些研究报告称,癫痫发作后广泛脑电图抑制(PGES)是癫痫猝死(SUDEP)风险的潜在脑电图(EEG)生物标志物。PGES 是癫痫发作后 EEG 无活动的一个时段,由于呼吸、运动和肌肉活动等伪影会对记录的 EEG 数据质量产生不利影响,因此在临床数据中检测 PGES 极其困难。即使是临床专家对 EEG 进行视觉解读,对于特定患者的 PGES 的起始和结束也会存在不同意见。自动 EEG 抑制检测工具的开发可以帮助临床人员对癫痫发作文件进行审查和注释,还可以为在大量患者队列中量化 PGES 提供一个标准,这可能有助于进一步阐明 PGES 作为 SUDEP 风险生物标志物的作用。在本文中,我们开发了一个自动系统,该系统可以使用频域特征结合提升分类算法来检测 PGES 的起始和结束。使用快速傅里叶变换从预滤波记录信号中提取 EEG 信号不同频带的平均功率,并将其用作分类算法的特征集。提升算法的底层分类器是使用逻辑回归模型的线性分类器。该工具是使用 12 个由专家标注的癫痫发作进行开发的,然后在另外 20 个由 11 位专家标注的癫痫发作上进行测试和评估。