Suppr超能文献

发作后全面性 EEG 抑制的自动检测。

Automated Detection of Postictal Generalized EEG Suppression.

出版信息

IEEE Trans Biomed Eng. 2018 Feb;65(2):371-377. doi: 10.1109/TBME.2017.2771468.

Abstract

Although there is no strict consensus, some studies have reported that Postictal generalized EEG suppression (PGES) is a potential electroencephalographic (EEG) biomarker for risk of sudden unexpected death in epilepsy (SUDEP). PGES is an epoch of EEG inactivity after a seizure, and the detection of PGES in clinical data is extremely difficult due to artifacts from breathing, movement and muscle activity that can adversely affect the quality of the recorded EEG data. Even clinical experts visually interpreting the EEG will have diverse opinions on the start and end of PGES for a given patient. The development of an automated EEG suppression detection tool can assist clinical personnel in the review and annotation of seizure files, and can also provide a standard for quantifying PGES in large patient cohorts, possibly leading to further clarification of the role of PGES as a biomarker of SUDEP risk. In this paper, we develop an automated system that can detect the start and end of PGES using frequency domain features in combination with boosting classification algorithms. The average power for different frequency ranges of EEG signals are extracted from the prefiltered recorded signal using the fast fourier transform and are used as the feature set for the classification algorithm. The underlying classifiers for the boosting algorithm are linear classifiers using a logistic regression model. The tool is developed using 12 seizures annotated by an expert then tested and evaluated on another 20 seizures that were annotated by 11 experts.

摘要

虽然没有严格的共识,但一些研究报告称,癫痫发作后广泛脑电图抑制(PGES)是癫痫猝死(SUDEP)风险的潜在脑电图(EEG)生物标志物。PGES 是癫痫发作后 EEG 无活动的一个时段,由于呼吸、运动和肌肉活动等伪影会对记录的 EEG 数据质量产生不利影响,因此在临床数据中检测 PGES 极其困难。即使是临床专家对 EEG 进行视觉解读,对于特定患者的 PGES 的起始和结束也会存在不同意见。自动 EEG 抑制检测工具的开发可以帮助临床人员对癫痫发作文件进行审查和注释,还可以为在大量患者队列中量化 PGES 提供一个标准,这可能有助于进一步阐明 PGES 作为 SUDEP 风险生物标志物的作用。在本文中,我们开发了一个自动系统,该系统可以使用频域特征结合提升分类算法来检测 PGES 的起始和结束。使用快速傅里叶变换从预滤波记录信号中提取 EEG 信号不同频带的平均功率,并将其用作分类算法的特征集。提升算法的底层分类器是使用逻辑回归模型的线性分类器。该工具是使用 12 个由专家标注的癫痫发作进行开发的,然后在另外 20 个由 11 位专家标注的癫痫发作上进行测试和评估。

相似文献

1
Automated Detection of Postictal Generalized EEG Suppression.
IEEE Trans Biomed Eng. 2018 Feb;65(2):371-377. doi: 10.1109/TBME.2017.2771468.
2
Automated detection of activity onset after postictal generalized EEG suppression.
BMC Med Inform Decis Mak. 2020 Dec 24;20(Suppl 12):327. doi: 10.1186/s12911-020-01307-7.
3
Voltage-based automated detection of postictal generalized electroencephalographic suppression: Algorithm development and validation.
Clin Neurophysiol. 2020 Dec;131(12):2817-2825. doi: 10.1016/j.clinph.2020.08.015. Epub 2020 Sep 11.
4
Automated Video Detection of Epileptic Convulsion Slowing as a Precursor for Post-Seizure Neuronal Collapse.
Int J Neural Syst. 2016 Dec;26(8):1650027. doi: 10.1142/S0129065716500271. Epub 2016 Apr 4.
6
Local brain activity persists during apparently generalized postictal EEG suppression.
Epilepsy Behav. 2016 Sep;62:218-24. doi: 10.1016/j.yebeh.2016.07.008. Epub 2016 Aug 3.
10
A hybrid unsupervised and supervised learning approach for postictal generalized EEG suppression detection.
Front Neuroinform. 2022 Dec 19;16:1040084. doi: 10.3389/fninf.2022.1040084. eCollection 2022.

引用本文的文献

1
Identification of Post-Ictal Generalised EEG Suppression with Two-Channel EEG.
Sensors (Basel). 2025 Aug 9;25(16):4932. doi: 10.3390/s25164932.
2
Incidence and Types of Cardiac Arrhythmias in the Peri-Ictal Period in Patients Having a Generalized Convulsive Seizure.
Neurology. 2024 Jul 9;103(1):e209501. doi: 10.1212/WNL.0000000000209501. Epub 2024 Jun 13.
3
A hybrid unsupervised and supervised learning approach for postictal generalized EEG suppression detection.
Front Neuroinform. 2022 Dec 19;16:1040084. doi: 10.3389/fninf.2022.1040084. eCollection 2022.
5
Quiescence during burst suppression and postictal generalized EEG suppression are distinct patterns of activity.
Clin Neurophysiol. 2022 Oct;142:125-132. doi: 10.1016/j.clinph.2022.07.493. Epub 2022 Jul 30.
6
The Good, the Bad, and the Deadly: Adenosinergic Mechanisms Underlying Sudden Unexpected Death in Epilepsy.
Front Neurosci. 2021 Jul 12;15:708304. doi: 10.3389/fnins.2021.708304. eCollection 2021.
7
Automated Analysis of Risk Factors for Postictal Generalized EEG Suppression.
Front Neurol. 2021 May 11;12:669517. doi: 10.3389/fneur.2021.669517. eCollection 2021.
8
Delta-gamma phase-amplitude coupling as a biomarker of postictal generalized EEG suppression.
Brain Commun. 2020 Nov 2;2(2):fcaa182. doi: 10.1093/braincomms/fcaa182. eCollection 2020.
9
A lightweight convolutional neural network for assessing an EEG risk marker for sudden unexpected death in epilepsy.
BMC Med Inform Decis Mak. 2020 Dec 24;20(Suppl 12):329. doi: 10.1186/s12911-020-01310-y.
10
A community effort for automatic detection of postictal generalized EEG suppression in epilepsy.
BMC Med Inform Decis Mak. 2020 Dec 24;20(Suppl 12):328. doi: 10.1186/s12911-020-01306-8.

本文引用的文献

1
Postictal generalized EEG suppression and SUDEP: a review.
J Clin Neurophysiol. 2015 Feb;32(1):14-20. doi: 10.1097/WNP.0000000000000147.
2
Postictal generalized EEG suppression: an inconsistent finding in people with multiple seizures.
Neurology. 2013 Oct 1;81(14):1252-6. doi: 10.1212/WNL.0b013e3182a6cbeb. Epub 2013 Aug 21.
3
Prevention of sudden unexpected death in epilepsy: a realistic goal?
Epilepsia. 2013 May;54 Suppl 2:23-8. doi: 10.1111/epi.12180.
4
Autonomic changes with seizures correlate with postictal EEG suppression.
Neurology. 2012 Jun 5;78(23):1868-76. doi: 10.1212/WNL.0b013e318258f7f1. Epub 2012 Apr 25.
5
Postictal generalized electroencephalographic suppression is associated with generalized seizures.
Epilepsy Behav. 2011 Jul;21(3):271-4. doi: 10.1016/j.yebeh.2011.04.008. Epub 2011 May 14.
6
An electroclinical case-control study of sudden unexpected death in epilepsy.
Ann Neurol. 2010 Dec;68(6):787-96. doi: 10.1002/ana.22101.
7
Sudden unexpected death in epilepsy: terminology and definitions.
Epilepsia. 1997 Nov;38(11 Suppl):S6-8. doi: 10.1111/j.1528-1157.1997.tb06130.x.
8
Approximate entropy-based epileptic EEG detection using artificial neural networks.
IEEE Trans Inf Technol Biomed. 2007 May;11(3):288-95. doi: 10.1109/titb.2006.884369.
9
Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings.
Clin Neurophysiol. 2007 May;118(5):1134-43. doi: 10.1016/j.clinph.2006.12.019. Epub 2007 Mar 23.
10
Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients.
J Neurosci Methods. 2005 Oct 30;148(2):113-21. doi: 10.1016/j.jneumeth.2005.04.013. Epub 2005 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验