Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA.
Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Clin Neurophysiol. 2020 Dec;131(12):2851-2860. doi: 10.1016/j.clinph.2020.09.023. Epub 2020 Oct 16.
OBJECTIVE: A novel analytic approach for task-related high-gamma modulation (HGM) in stereo-electroencephalography (SEEG) was developed and evaluated for language mapping. METHODS: SEEG signals, acquired from drug-resistant epilepsy patients during a visual naming task, were analyzed to find clusters of 50-150 Hz power modulations in time-frequency domain. Classifier models to identify electrode contacts within the reference neuroanatomy and electrical stimulation mapping (ESM) speech/language sites were developed and validated. RESULTS: In 21 patients (9 females), aged 4.8-21.2 years, SEEG HGM model predicted electrode locations within Neurosynth language parcels with high diagnostic odds ratio (DOR 10.9, p < 0.0001), high specificity (0.85), and fair sensitivity (0.66). Another SEEG HGM model classified ESM speech/language sites with significant DOR (5.0, p < 0.0001), high specificity (0.74), but insufficient sensitivity. Time to largest power change reliably localized electrodes within Neurosynth language parcels, while, time to center-of-mass power change identified ESM sites. CONCLUSIONS: SEEG HGM mapping can accurately localize neuroanatomic and ESM language sites. SIGNIFICANCE: Predictive modelling incorporating time, frequency, and magnitude of power change is a useful methodology for task-related HGM, which offers insights into discrepancies between HGM language maps and neuroanatomy or ESM.
目的:开发并评估了一种用于语言映射的新型立体脑电图(SEEG)任务相关高伽马调制(HGM)分析方法。
方法:对耐药性癫痫患者在视觉命名任务期间采集的 SEEG 信号进行分析,以在时频域中找到 50-150 Hz 功率调制的簇。开发并验证了用于识别参考神经解剖结构和电刺激映射(ESM)言语/语言部位内电极接触的分类器模型。
结果:在 21 名(9 名女性)年龄为 4.8-21.2 岁的患者中,SEEG HGM 模型以高诊断优势比(DOR 10.9,p < 0.0001)、高特异性(0.85)和中等敏感性(0.66)预测了 Neurosynth 语言区的电极位置。另一个 SEEG HGM 模型对 ESM 言语/语言部位进行分类,具有显著的 DOR(5.0,p < 0.0001)、高特异性(0.74),但敏感性不足。最大功率变化的时间可可靠地定位 Neurosynth 语言区的电极,而质心功率变化的时间可识别 ESM 部位。
结论:SEEG HGM 映射可以准确地定位神经解剖结构和 ESM 语言部位。
意义:纳入功率变化的时间、频率和幅度的预测模型是一种用于任务相关 HGM 的有用方法,它提供了有关 HGM 语言图与神经解剖结构或 ESM 之间差异的见解。
Epilepsy Behav. 2019-8-15
Clin Neurophysiol. 2020-8
Clin Neurophysiol. 2021-12
Clin Neurophysiol. 2024-7
Clin Neurophysiol. 2021-12