Suppr超能文献

一群微型飞行机器人探索未知环境的最小导航解决方案。

Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment.

作者信息

McGuire K N, De Wagter C, Tuyls K, Kappen H J, de Croon G C H E

机构信息

Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands.

Department of Computer Science, University of Liverpool, Liverpool, UK.

出版信息

Sci Robot. 2019 Oct 23;4(35). doi: 10.1126/scirobotics.aaw9710.

Abstract

Swarms of tiny flying robots hold great potential for exploring unknown, indoor environments. Their small size allows them to move in narrow spaces, and their light weight makes them safe for operating around humans. Until now, this task has been out of reach due to the lack of adequate navigation strategies. The absence of external infrastructure implies that any positioning attempts must be performed by the robots themselves. State-of-the-art solutions, such as simultaneous localization and mapping, are still too resource demanding. This article presents the swarm gradient bug algorithm (SGBA), a minimal navigation solution that allows a swarm of tiny flying robots to autonomously explore an unknown environment and subsequently come back to the departure point. SGBA maximizes coverage by having robots travel in different directions away from the departure point. The robots navigate the environment and deal with static obstacles on the fly by means of visual odometry and wall-following behaviors. Moreover, they communicate with each other to avoid collisions and maximize search efficiency. To come back to the departure point, the robots perform a gradient search toward a home beacon. We studied the collective aspects of SGBA, demonstrating that it allows a group of 33-g commercial off-the-shelf quadrotors to successfully explore a real-world environment. The application potential is illustrated by a proof-of-concept search-and-rescue mission in which the robots captured images to find "victims" in an office environment. The developed algorithms generalize to other robot types and lay the basis for tackling other similarly complex missions with robot swarms in the future.

摘要

成群的微型飞行机器人在探索未知的室内环境方面具有巨大潜力。它们体积小,能够在狭窄空间中移动,重量轻,在人类周围操作也很安全。到目前为止,由于缺乏足够的导航策略,这项任务一直无法实现。缺乏外部基础设施意味着任何定位尝试都必须由机器人自身完成。诸如同步定位与地图构建等最先进的解决方案仍然对资源要求过高。本文提出了群体梯度虫算法(SGBA),这是一种最小化的导航解决方案,它允许一群微型飞行机器人自主探索未知环境并随后返回出发点。SGBA通过让机器人从出发点向不同方向行进,实现了最大程度的覆盖。机器人借助视觉里程计和沿墙跟随行为在环境中导航并实时应对静态障碍物。此外,它们相互通信以避免碰撞并最大化搜索效率。为了返回出发点,机器人朝着归巢信标执行梯度搜索。我们研究了SGBA的群体特性,证明它能让一组33克的商用现成四旋翼飞行器成功探索真实世界环境。在一次概念验证搜索救援任务中展示了其应用潜力,在该任务中机器人拍摄图像以在办公环境中寻找“受害者”。所开发的算法可推广到其他机器人类型,并为未来用机器人集群应对其他类似复杂任务奠定基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验