Gronbach Mathis, Mitrach Franziska, Möller Stephanie, Rother Sandra, Friebe Sabrina, Mayr Stefan G, Schnabelrauch Matthias, Hintze Vera, Hacker Michael C, Schulz-Siegmund Michaela
Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Str. 15A, 04317 Leipzig, Germany.
Biomaterials Department, INNOVENT e.V., Pruessingstraße 27B, 07745 Jena, Germany.
Pharmaceutics. 2020 Oct 29;12(11):1037. doi: 10.3390/pharmaceutics12111037.
High serum levels of Wnt antagonists are known to be involved in delayed bone defect healing. Pharmaceutically active implant materials that can modulate the micromilieu of bone defects with regard to Wnt antagonists are therefore considered promising to support defect regeneration. In this study, we show the versatility of a macromer based biomaterial platform to systematically optimize covalent surface decoration with high-sulfated glycosaminoglycans (sHA3) for efficient scavenging of Wnt antagonist sclerostin. Film surfaces representing scaffold implants were cross-copolymerized from three-armed biodegradable macromers and glycidylmethacrylate and covalently decorated with various polyetheramine linkers. The impact of linker properties (size, branching) and density on sHA3 functionalization efficiency and scavenging capacities for sclerostin was tested. The copolymerized 2D system allowed for finding an optimal, cytocompatible formulation for sHA3 functionalization. On these optimized sHA3 decorated films, we showed efficient scavenging of Wnt antagonists DKK1 and sclerostin, whereas Wnt agonist Wnt3a remained in the medium of differentiating SaOS-2 and hMSC. Consequently, qualitative and quantitative analysis of hydroxyapatite staining as a measure for osteogenic differentiation revealed superior mineralization on sHA3 materials. In conclusion, we showed how our versatile material platform enables us to efficiently scavenge and inactivate Wnt antagonists from the osteogenic micromilieu. We consider this a promising approach to reduce the negative effects of Wnt antagonists in regeneration of bone defects via sHA3 decorated macromer based macroporous implants.
已知血清中高水平的Wnt拮抗剂与骨缺损愈合延迟有关。因此,能够调节骨缺损微环境中Wnt拮抗剂的具有药物活性的植入材料有望支持缺损再生。在本研究中,我们展示了一种基于大分子单体的生物材料平台的多功能性,该平台可系统地优化高硫酸化糖胺聚糖(sHA3)的共价表面修饰,以有效清除Wnt拮抗剂硬化蛋白。代表支架植入物的薄膜表面由三臂可生物降解大分子单体和甲基丙烯酸缩水甘油酯交联共聚而成,并用各种聚醚胺连接体进行共价修饰。测试了连接体性质(大小、分支)和密度对sHA3功能化效率和对硬化蛋白清除能力的影响。这种共聚二维系统有助于找到用于sHA3功能化的最佳细胞相容性配方。在这些优化的sHA3修饰薄膜上,我们展示了对Wnt拮抗剂DKK1和硬化蛋白的有效清除,而Wnt激动剂Wnt3a仍保留在分化中的SaOS-2和人间充质干细胞培养基中。因此,作为成骨分化指标的羟基磷灰石染色的定性和定量分析显示,sHA3材料上的矿化效果更佳。总之,我们展示了我们多功能的材料平台如何使我们能够有效地从成骨微环境中清除和灭活Wnt拮抗剂。我们认为这是一种有前景的方法,可通过基于sHA3修饰大分子单体的大孔植入物来减少Wnt拮抗剂对骨缺损再生的负面影响。