Matos F, Svensson J, Pavone A, Odstrčil T, Jenko F
Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany.
Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald, Germany.
Rev Sci Instrum. 2020 Oct 1;91(10):103501. doi: 10.1063/5.0020680.
Gaussian process tomography (GPT) is a method used for obtaining real-time tomographic reconstructions of the plasma emissivity profile in tokamaks, given some model for the underlying physical processes involved. GPT can also be used, thanks to Bayesian formalism, to perform model selection, i.e., comparing different models and choosing the one with maximum evidence. However, the computations involved in this particular step may become slow for data with high dimensionality, especially when comparing the evidence for many different models. Using measurements collected by the Soft X-Ray (SXR) diagnostic in the ASDEX Upgrade tokamak, we train a convolutional neural network to map SXR tomographic projections to the corresponding GPT model whose evidence is highest. We then compare the network's results, and the time required to calculate them, with those obtained through analytical Bayesian formalism. In addition, we use the network's classifications to produce tomographic reconstructions of the plasma emissivity profile.
高斯过程断层扫描(GPT)是一种用于在托卡马克中获取等离子体发射率剖面实时断层重建的方法,前提是有关于所涉及的潜在物理过程的某种模型。由于贝叶斯形式主义,GPT还可用于执行模型选择,即比较不同模型并选择具有最大证据的模型。然而,对于高维数据,这一特定步骤中涉及的计算可能会变得缓慢,尤其是在比较许多不同模型的证据时。利用ASDEX Upgrade托卡马克中软X射线(SXR)诊断所收集的测量数据,我们训练了一个卷积神经网络,以将SXR断层投影映射到具有最高证据的相应GPT模型。然后,我们将网络的结果以及计算这些结果所需的时间与通过解析贝叶斯形式主义获得的结果进行比较。此外,我们使用网络的分类来生成等离子体发射率剖面的断层重建。