Thomsen Johannes, Sletfjerding Magnus Berg, Jensen Simon Bo, Stella Stefano, Paul Bijoya, Malle Mette Galsgaard, Montoya Guillermo, Petersen Troels Christian, Hatzakis Nikos S
Department of Chemistry and Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark.
Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Elife. 2020 Nov 3;9:e60404. doi: 10.7554/eLife.60404.
Single-molecule Förster Resonance energy transfer (smFRET) is an adaptable method for studying the structure and dynamics of biomolecules. The development of high throughput methodologies and the growth of commercial instrumentation have outpaced the development of rapid, standardized, and automated methodologies to objectively analyze the wealth of produced data. Here we present DeepFRET, an automated, open-source standalone solution based on deep learning, where the only crucial human intervention in transiting from raw microscope images to histograms of biomolecule behavior, is a user-adjustable quality threshold. Integrating standard features of smFRET analysis, DeepFRET consequently outputs the common kinetic information metrics. Its classification accuracy on ground truth data reached >95% outperforming human operators and commonly used threshold, only requiring ~1% of the time. Its precise and rapid operation on real data demonstrates DeepFRET's capacity to objectively quantify biomolecular dynamics and the potential to contribute to benchmarking smFRET for dynamic structural biology.
单分子荧光共振能量转移(smFRET)是一种用于研究生物分子结构和动力学的适应性方法。高通量方法的发展和商业仪器的增长超过了快速、标准化和自动化方法的发展,以便客观地分析所产生的大量数据。在这里,我们展示了DeepFRET,这是一种基于深度学习的自动化、开源独立解决方案,从原始显微镜图像到生物分子行为直方图的转换过程中,唯一关键的人工干预是用户可调整的质量阈值。DeepFRET整合了smFRET分析的标准特征,因此输出常见的动力学信息指标。它在真实数据上的分类准确率超过95%,优于人类操作员和常用阈值,且只需要大约1%的时间。它在实际数据上的精确快速操作证明了DeepFRET客观量化生物分子动力学的能力,以及为动态结构生物学的smFRET基准测试做出贡献的潜力。
Methods Mol Biol. 2017
Methods Mol Biol. 2022
bioRxiv. 2025-8-27
Biomolecules. 2025-6-9
Nat Protoc. 2025-6-4
Proc Natl Acad Sci U S A. 2024-10-22
RSC Adv. 2019-5-13
Nat Commun. 2020-7-3
Nat Commun. 2019-12-11
Proc Natl Acad Sci U S A. 2019-11-12
Nat Methods. 2019-9-30
Nat Rev Mol Cell Biol. 2019-11