Suppr超能文献

神经元的机械损伤会导致 tau 蛋白向树突棘的异常定位和 tau 依赖性的突触功能障碍。

Mechanical injuries of neurons induce tau mislocalization to dendritic spines and tau-dependent synaptic dysfunction.

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455.

Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455.

出版信息

Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):29069-29079. doi: 10.1073/pnas.2008306117. Epub 2020 Nov 2.

Abstract

Chronic traumatic encephalopathy (CTE) is associated with repeated traumatic brain injuries (TBI) and is characterized by cognitive decline and the presence of neurofibrillary tangles (NFTs) of the protein tau in patients' brains. Here we provide direct evidence that cell-scale mechanical deformation can elicit tau abnormalities and synaptic deficits in neurons. Using computational modeling, we find that the early pathological loci of NFTs in CTE brains are regions of high deformation during injury. The mechanical energy associated with high-strain rate deformation alone can induce tau mislocalization to dendritic spines and synaptic deficits in cultured rat hippocampal neurons. These cellular changes are mediated by tau hyperphosphorylation and can be reversed through inhibition of GSK3β and CDK5 or genetic deletion of tau. Together, these findings identify a mechanistic pathway that directly relates mechanical deformation of neurons to tau-mediated synaptic impairments and provide a possibly exploitable therapeutic pathway to combat CTE.

摘要

慢性创伤性脑病(CTE)与反复性创伤性脑损伤(TBI)相关,其特征是患者大脑中的认知能力下降和神经原纤维缠结(NFTs)的出现。在这里,我们提供了直接的证据表明细胞级别的机械变形可以在神经元中引发 tau 异常和突触缺失。通过计算建模,我们发现 CTE 大脑中 NFTs 的早期病理位置是损伤过程中变形较高的区域。单纯的高应变速率变形所产生的机械能就可以导致 tau 错误定位到树突棘和培养的大鼠海马神经元的突触缺失。这些细胞变化是通过 tau 过度磷酸化介导的,并且可以通过抑制 GSK3β 和 CDK5 或 tau 的基因缺失来逆转。总之,这些发现确定了一个机械途径,该途径将神经元的机械变形直接与 tau 介导的突触损伤联系起来,并为对抗 CTE 提供了一条可能可行的治疗途径。

相似文献

1
Mechanical injuries of neurons induce tau mislocalization to dendritic spines and tau-dependent synaptic dysfunction.
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):29069-29079. doi: 10.1073/pnas.2008306117. Epub 2020 Nov 2.
2
Pathologic Thr tau phosphorylation in CTE and CTE with ALS.
Neurology. 2018 Jan 30;90(5):e380-e387. doi: 10.1212/WNL.0000000000004899. Epub 2018 Jan 3.
3
Uncoupled Endothelial Nitric Oxide Synthase Enhances p-Tau in Chronic Traumatic Encephalopathy Mouse Model.
Antioxid Redox Signal. 2019 May 1;30(13):1601-1620. doi: 10.1089/ars.2017.7280. Epub 2018 Sep 7.
4
Orientation of neurites influences severity of mechanically induced tau pathology.
Biophys J. 2021 Aug 17;120(16):3272-3282. doi: 10.1016/j.bpj.2021.07.011. Epub 2021 Jul 20.
6
Traumatic Brain Injury as a Trigger of Neurodegeneration.
Adv Neurobiol. 2017;15:383-400. doi: 10.1007/978-3-319-57193-5_15.
7
Tau progression in single severe frontal traumatic brain injury in human brains.
J Neurol Sci. 2019 Dec 15;407:116495. doi: 10.1016/j.jns.2019.116495. Epub 2019 Oct 9.
8
Clustering of tau-immunoreactive pathology in chronic traumatic encephalopathy.
J Neural Transm (Vienna). 2017 Feb;124(2):185-192. doi: 10.1007/s00702-016-1635-1. Epub 2016 Oct 21.

引用本文的文献

1
Early cerebrospinal fluid elevations of pTau-217 in severe traumatic brain injury subjects.
Front Neurol. 2025 Jul 30;16:1632679. doi: 10.3389/fneur.2025.1632679. eCollection 2025.
2
Adherent cells undergo rate softening mediated by actomyosin kinetics.
Biophys J. 2025 Sep 2;124(17):2840-2853. doi: 10.1016/j.bpj.2025.07.026. Epub 2025 Jul 25.
3
Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery.
Signal Transduct Target Ther. 2025 May 7;10(1):146. doi: 10.1038/s41392-025-02179-x.
5
Cavitation in blunt impact traumatic brain injury.
Exp Fluids. 2024;65(8):114. doi: 10.1007/s00348-024-03853-6. Epub 2024 Jul 17.
7
Actomyosin-II protects axons from degeneration induced by mild mechanical stress.
J Cell Biol. 2024 Aug 5;223(8). doi: 10.1083/jcb.202206046. Epub 2024 May 7.
8
Recent insights from non-mammalian models of brain injuries: an emerging literature.
Front Neurol. 2024 Mar 19;15:1378620. doi: 10.3389/fneur.2024.1378620. eCollection 2024.
9
Super-Resolution Imaging of Tau Proteins in Isolated and Immobilized Brain Synaptosomes.
Methods Mol Biol. 2024;2754:445-456. doi: 10.1007/978-1-0716-3629-9_24.
10
Appreciating the role of cell shape changes in the mechanobiology of epithelial tissues.
Biophys Rev (Melville). 2022 Mar 16;3(1):011305. doi: 10.1063/5.0074317. eCollection 2022 Mar.

本文引用的文献

1
The Accumulation of Tau in Postsynaptic Structures: A Common Feature in Multiple Neurodegenerative Diseases?
Neuroscientist. 2020 Oct-Dec;26(5-6):503-520. doi: 10.1177/1073858420916696. Epub 2020 May 9.
2
Axonal transport: Driving synaptic function.
Science. 2019 Oct 11;366(6462). doi: 10.1126/science.aaw9997.
3
Phosphorylation in two discrete tau domains regulates a stepwise process leading to postsynaptic dysfunction.
J Physiol. 2021 May;599(9):2483-2498. doi: 10.1113/JP277459. Epub 2019 Jul 7.
4
Tau Proteins and Tauopathies in Alzheimer's Disease.
Cell Mol Neurobiol. 2018 Jul;38(5):965-980. doi: 10.1007/s10571-017-0574-1. Epub 2018 Jan 3.
5
Viscoelastic parameter identification of human brain tissue.
J Mech Behav Biomed Mater. 2017 Oct;74:463-476. doi: 10.1016/j.jmbbm.2017.07.014. Epub 2017 Jul 11.
6
Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation.
PLoS Genet. 2017 Jul 5;13(7):e1006849. doi: 10.1371/journal.pgen.1006849. eCollection 2017 Jul.
7
Tau association with synaptic vesicles causes presynaptic dysfunction.
Nat Commun. 2017 May 11;8:15295. doi: 10.1038/ncomms15295.
10
Caspase-2 cleavage of tau reversibly impairs memory.
Nat Med. 2016 Nov;22(11):1268-1276. doi: 10.1038/nm.4199. Epub 2016 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验