文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

PLGA/HAP 支架的合成与表征,该支架具有 DNA 功能化的磷酸钙纳米粒子,用于骨组织工程。

Synthesis and characterization of PLGA/HAP scaffolds with DNA-functionalised calcium phosphate nanoparticles for bone tissue engineering.

机构信息

Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany.

Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.

出版信息

J Mater Sci Mater Med. 2020 Nov 2;31(11):102. doi: 10.1007/s10856-020-06442-1.


DOI:10.1007/s10856-020-06442-1
PMID:33140175
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7606283/
Abstract

Porous scaffolds of poly(lactide-co-glycolide) (PLGA; 85:15) and nano-hydroxyapatite (nHAP) were prepared by an emulsion-precipitation procedure from uniform PLGA-nHAP spheres (150-250 µm diameter). These spheres were then thermally sintered at 83 °C to porous scaffolds that can serve for bone tissue engineering or for bone substitution. The base materials PLGA and nHAP and the PLGA-nHAP scaffolds were extensively characterized by X-ray powder diffraction, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, and scanning electron microscopy. The scaffold porosity was about 50 vol% as determined by relating mass and volume of the scaffolds, together with the computed density of the solid phase (PLGA-nHAP). The cultivation of HeLa cells demonstrated their high cytocompatibility. In combination with DNA-loaded calcium phosphate nanoparticles, they showed a good activity of gene transfection with enhanced green fluorescent protein (EGFP) as model protein. This is expected enhance bone growth around an implanted scaffold or inside a scaffold for tissue engineering.

摘要

聚(丙交酯-乙交酯)(PLGA; 85:15)和纳米羟基磷灰石(nHAP)的多孔支架通过从均匀的 PLGA-nHAP 球(150-250μm 直径)的乳液沉淀程序制备。然后将这些球在 83°C 下进行热烧结,制成可用于骨组织工程或骨替代的多孔支架。基础材料 PLGA 和 nHAP 以及 PLGA-nHAP 支架通过 X 射线粉末衍射、红外光谱、热重分析、差示扫描量热法和扫描电子显微镜进行了广泛的表征。通过与支架的质量和体积相关联,并结合固相(PLGA-nHAP)的计算密度,确定支架的孔隙率约为 50 体积%。用 HeLa 细胞培养表明其具有高细胞相容性。与负载 DNA 的磷酸钙纳米颗粒结合使用,它们作为模型蛋白显示出良好的基因转染活性,增强型绿色荧光蛋白(EGFP)。这有望增强植入支架周围或组织工程支架内的骨生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/12276ed42ef0/10856_2020_6442_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/3bff7e0bf1d9/10856_2020_6442_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/7078998c2249/10856_2020_6442_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/9934e20d78c0/10856_2020_6442_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/953b2319c66a/10856_2020_6442_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/7eb7c03136ad/10856_2020_6442_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/9dff26952a94/10856_2020_6442_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/84c39874b7a6/10856_2020_6442_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/ab1bd7f4de0f/10856_2020_6442_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/88db571b9689/10856_2020_6442_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/7985eabd8a6f/10856_2020_6442_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/592b4262b644/10856_2020_6442_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/4e17a58a7a89/10856_2020_6442_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/12276ed42ef0/10856_2020_6442_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/3bff7e0bf1d9/10856_2020_6442_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/7078998c2249/10856_2020_6442_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/9934e20d78c0/10856_2020_6442_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/953b2319c66a/10856_2020_6442_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/7eb7c03136ad/10856_2020_6442_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/9dff26952a94/10856_2020_6442_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/84c39874b7a6/10856_2020_6442_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/ab1bd7f4de0f/10856_2020_6442_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/88db571b9689/10856_2020_6442_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/7985eabd8a6f/10856_2020_6442_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/592b4262b644/10856_2020_6442_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/4e17a58a7a89/10856_2020_6442_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/7606283/12276ed42ef0/10856_2020_6442_Fig13_HTML.jpg

相似文献

[1]
Synthesis and characterization of PLGA/HAP scaffolds with DNA-functionalised calcium phosphate nanoparticles for bone tissue engineering.

J Mater Sci Mater Med. 2020-11-2

[2]
Preparation and Characterization of Surface Heat Sintered Nanohydroxyapatite and Nanowhitlockite Embedded Poly (Lactic-co-glycolic Acid) Microsphere Bone Graft Scaffolds: In Vitro and in Vivo Studies.

Int J Mol Sci. 2020-1-14

[3]
Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering.

J Mater Sci Mater Med. 2011-6-18

[4]
Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.

J Zhejiang Univ Sci B.

[5]
In vitro mineralization by preosteoblasts in poly(DL-lactide-co-glycolide) inverse opal scaffolds reinforced with hydroxyapatite nanoparticles.

Langmuir. 2010-7-20

[6]
Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations.

J Mater Sci Mater Med. 2009-9

[7]
Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds.

Biomed Mater Eng. 2017

[8]
Inorganic apatite nanomaterial: Modified surface phenomena and its role in developing collagen based polymeric bio-composite (Coll-PLGA/HAp) for biological applications.

Colloids Surf B Biointerfaces. 2018-9-18

[9]
Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.

J Periodontal Res. 2015-4

[10]
Synergistic effects of thermal treatment and encapsulation of calcium phosphate nanoparticles on enhancing dimensional stability and osteogenic induction potential of free-standing PLGA electrospun membranes.

Colloids Surf B Biointerfaces. 2019-11-1

引用本文的文献

[1]
Advantages of nanoencapsulation in the delivery of therapeutics for bone regeneration.

Nanomedicine (Lond). 2025-4

[2]
From the microspheres to scaffolds: advances in polymer microsphere scaffolds for bone regeneration applications.

Biomater Transl. 2024-9-28

[3]
Bone targeted nano-drug and nano-delivery.

Bone Res. 2024-9-4

[4]
Advances in the Study of Bionic Mineralized Collagen, PLGA, Magnesium Ionomer Materials, and Their Composite Scaffolds for Bone Defect Treatment.

J Funct Biomater. 2023-8-1

[5]
PLGA-based drug delivery systems in treating bone tumors.

Front Bioeng Biotechnol. 2023-6-1

[6]
Azithromycin-carrying and microtubule-orientated biomimetic poly (lactic-co-glycolic acid) scaffolds for eyelid reconstruction.

Front Med (Lausanne). 2023-5-16

[7]
Local transplantation of GMSC-derived exosomes to promote vascularized diabetic wound healing by regulating the Wnt/β-catenin pathways.

Nanoscale Adv. 2022-12-8

[8]
PLGA-Based Nanomedicine: History of Advancement and Development in Clinical Applications of Multiple Diseases.

Pharmaceutics. 2022-12-6

[9]
Calcium Phosphate-Based Biomaterials for Bone Repair.

J Funct Biomater. 2022-10-14

[10]
In Vivo Bone Tissue Engineering Strategies: Advances and Prospects.

Polymers (Basel). 2022-8-8

本文引用的文献

[1]
Well-ordered biphasic calcium phosphate-alginate scaffolds fabricated by multi-channel 3D plotting under mild conditions.

J Mater Chem B. 2013-9-7

[2]
In vivo biodistribution of calcium phosphate nanoparticles after intravascular, intramuscular, intratumoral, and soft tissue administration in mice investigated by small animal PET/CT.

Acta Biomater. 2020-6

[3]
Reduction of inflammation in a chronic periodontitis model in rats by TNF-α gene silencing with a topically applied siRNA-loaded calcium phosphate paste.

Acta Biomater. 2020-3-15

[4]
Microsphere-Based Hierarchically Juxtapositioned Biphasic Scaffolds Prepared from Poly(Lactic-co-Glycolic Acid) and Nanohydroxyapatite for Osteochondral Tissue Engineering.

Polymers (Basel). 2016-12-10

[5]
Gelatin/Nanohyroxyapatite Cryogel Embedded Poly(lactic--glycolic Acid)/Nanohydroxyapatite Microsphere Hybrid Scaffolds for Simultaneous Bone Regeneration and Load-Bearing.

Polymers (Basel). 2018-6-5

[6]
Biomimetic fabrication of mineralized composite films of nanosilver loaded native fibrillar collagen and chitosan.

Mater Sci Eng C Mater Biol Appl. 2019-1-24

[7]
Foxp3 plasmid-encapsulated PLGA nanoparticles attenuate pain behavior in rats with spinal nerve ligation.

Nanomedicine. 2019-3-8

[8]
A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study.

J Mater Sci Mater Med. 2019-1-22

[9]
Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration.

Dent Mater. 2018-12-7

[10]
Calcium phosphate nanoparticle-mediated transfection in 2D and 3D mono- and co-culture cell models.

Acta Biomater. 2018-11-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索