Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
Institute for Structural and Systems Biology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
Protein Sci. 2021 Jan;30(1):201-217. doi: 10.1002/pro.3986. Epub 2020 Nov 21.
Protein stability is a key factor in successful structural and biochemical research. However, the approaches for systematic comparison of protein stability are limited by sample consumption or compatibility with sample buffer components. Here we describe how miniaturized measurement of intrinsic tryptophan fluorescence (NanoDSF assay) in combination with a simplified description of protein unfolding can be used to interrogate the stability of a protein sample. We demonstrate that improved protein stability measures, such as apparent Gibbs free energy of unfolding, rather than melting temperature T , should be used to rank the results of thermostability screens. The assay is compatible with protein samples of any composition, including protein complexes and membrane proteins. Our data analysis software, MoltenProt, provides an easy and robust way to perform characterization of multiple samples. Potential applications of MoltenProt and NanoDSF include buffer and construct optimization for X-ray crystallography and cryo-electron microscopy, screening for small-molecule binding partners and comparison of effects of point mutations.
蛋白质稳定性是结构和生化研究成功的关键因素。然而,系统比较蛋白质稳定性的方法受到样品消耗或与样品缓冲成分兼容性的限制。在这里,我们描述了如何将内在色氨酸荧光的微型化测量(NanoDSF 测定法)与蛋白质展开的简化描述结合使用,以研究蛋白质样品的稳定性。我们证明,改进的蛋白质稳定性测量方法,如表观解折叠吉布斯自由能,而不是熔点 T ,应该用于对热稳定性筛选的结果进行排序。该测定法与任何组成的蛋白质样品兼容,包括蛋白质复合物和膜蛋白。我们的数据分析软件 MoltenProt 提供了一种简单而强大的方法来对多个样品进行特征描述。MoltenProt 和 NanoDSF 的潜在应用包括 X 射线晶体学和冷冻电镜的缓冲液和构建优化、小分子结合伴侣的筛选以及点突变影响的比较。