Suppr超能文献

数据科学和机器学习在卫生专业教育中的作用:实际应用、理论贡献和认识信念。

The role of data science and machine learning in Health Professions Education: practical applications, theoretical contributions, and epistemic beliefs.

机构信息

Copenhagen Academy for Medical Education and Simulation (CAMES), Rigshospitalet, Copenhagen, Denmark.

Department of Obstetrics, Centre for Fetal Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.

出版信息

Adv Health Sci Educ Theory Pract. 2020 Dec;25(5):1057-1086. doi: 10.1007/s10459-020-10009-8. Epub 2020 Nov 3.

Abstract

Data science is an inter-disciplinary field that uses computer-based algorithms and methods to gain insights from large and often complex datasets. Data science, which includes Artificial Intelligence techniques such as Machine Learning (ML), has been credited with the promise to transform Health Professions Education (HPE) by offering approaches to handle big (and often messy) data. To examine this promise, we conducted a critical review to explore: (1) published applications of data science and ML in HPE literature and (2) the potential role of data science and ML in shifting theoretical and epistemological perspectives in HPE research and practice. Existing data science studies in HPE are often not informed by theory, but rather oriented towards developing applications for specific problems, uses, and contexts. The most common areas currently being studied are procedural (e.g., computer-based tutoring or adaptive systems and assessment of technical skills). We found that epistemic beliefs informing the use of data science and ML in HPE poses a challenge for existing views on what constitutes objective knowledge and the role of human subjectivity for instruction and assessment. As a result, criticisms have emerged that the integration of data science in the field of HPE is in danger of becoming technically driven and narrowly focused in its approach to teaching, learning and assessment. Our findings suggest that researchers tend to formalize around the epistemological stance driven largely by traditions of a research paradigm. Future data science studies in HPE need to involve both education scientists and data scientists to ensure mutual advancements in the development of educational theory and practical applications. This may be one of the most important tasks in the integration of data science and ML in HPE research in the years to come.

摘要

数据科学是一门跨学科领域,它使用基于计算机的算法和方法从大型且通常复杂的数据集获取洞察。数据科学包括人工智能技术,例如机器学习 (ML),被誉为通过提供处理大数据(通常是混乱数据)的方法来改变健康专业教育(HPE)。为了检验这一承诺,我们进行了批判性审查,以探索:(1) 数据科学和 ML 在 HPE 文献中的已发表应用,以及 (2) 数据科学和 ML 在转变 HPE 研究和实践中的理论和认识论观点方面的潜在作用。HPE 中现有的数据科学研究通常不受理论指导,而是倾向于针对特定问题、用途和背景开发应用程序。目前正在研究的最常见领域是程序性的(例如,基于计算机的辅导或自适应系统以及技术技能评估)。我们发现,在 HPE 中使用数据科学和 ML 的认识论信念对构成客观知识的现有观点以及人类主观性在教学和评估中的作用构成了挑战。因此,有人批评说,数据科学在 HPE 领域的整合有技术驱动和狭隘关注的危险,其教学、学习和评估方法。我们的研究结果表明,研究人员往往会围绕主要由研究范式传统驱动的认识论立场进行规范化。未来 HPE 中的数据科学研究需要教育科学家和数据科学家共同参与,以确保教育理论和实际应用的共同发展。这可能是未来 HPE 研究中数据科学和 ML 整合的最重要任务之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验