Suppr超能文献

人工智能对卫生专业教育中教育成果影响的系统评价。

A systematic review of the impact of artificial intelligence on educational outcomes in health professions education.

作者信息

Feigerlova Eva, Hani Hind, Hothersall-Davies Ellie

机构信息

Faculté de médecine, maïeutique et métiers de la santé, Université de Lorraine, Nancy, France.

Centre universitaire d'enseignement par simulation (CUESiM), Hôpital virtuel de Lorraine, Université de Lorraine, Nancy, France.

出版信息

BMC Med Educ. 2025 Jan 27;25(1):129. doi: 10.1186/s12909-025-06719-5.

Abstract

BACKGROUND

Artificial intelligence (AI) has a variety of potential applications in health professions education and assessment; however, measurable educational impacts of AI-based educational strategies on learning outcomes have not been systematically evaluated.

METHODS

A systematic literature search was conducted using electronic databases (CINAHL Plus, EMBASE, Proquest, Pubmed, Cochrane Library, and Web of Science) to identify studies published until October 1st 2024, analyzing the impact of AI-based tools/interventions in health profession assessment and/or training on educational outcomes. The present analysis follows the PRISMA 2020 statement for systematic reviews and the structured approach to reporting in health care education for evidence synthesis.

RESULTS

The final analysis included twelve studies. All were single centers with sample sizes ranging from 4 to 180 participants. Three studies were randomized controlled trials, and seven had a quasi-experimental design. Two studies were observational. The studies had a heterogenous design. Confounding variables were not controlled. None of the studies provided learning objectives or descriptions of the competencies to be achieved. Three studies applied learning theories in the development of AI-powered educational strategies. One study reported the analysis of the authenticity of the learning environment. No study provided information on the impact of feedback activities on learning outcomes. All studies corresponded to Kirkpatrick's second level evaluating technical skills or quantifiable knowledge. No study evaluated more complex tasks, such as the behavior of learners in the workplace. There was insufficient information on training datasets and copyright issues.

CONCLUSIONS

The results of the analysis show that the current evidence regarding measurable educational outcomes of AI-powered interventions in health professions education is poor. Further studies with a rigorous methodological approach are needed. The present work also highlights that there is no straightforward guide for evaluating the quality of research in AI-based education and suggests a series of criteria that should be considered.

TRIAL REGISTRATION

Methods and inclusion criteria were defined in advance, specified in a protocol and registered in the OSF registries ( https://osf.io/v5cgp/ ).

CLINICAL TRIAL NUMBER

not applicable.

摘要

背景

人工智能(AI)在卫生专业教育和评估中有多种潜在应用;然而,基于人工智能的教育策略对学习成果的可衡量教育影响尚未得到系统评估。

方法

使用电子数据库(CINAHL Plus、EMBASE、Proquest、Pubmed、Cochrane图书馆和Web of Science)进行系统文献检索,以识别截至2024年10月1日发表的研究,分析基于人工智能的工具/干预措施在卫生专业评估和/或培训中对教育成果的影响。本分析遵循PRISMA 2020系统评价声明以及卫生保健教育中证据综合报告的结构化方法。

结果

最终分析纳入了12项研究。所有研究均为单中心研究,样本量从4名到180名参与者不等。三项研究为随机对照试验,七项为准实验设计。两项研究为观察性研究。这些研究设计各异。混杂变量未得到控制。没有一项研究提供学习目标或对要实现的能力的描述。三项研究在开发人工智能驱动的教育策略时应用了学习理论。一项研究报告了对学习环境真实性的分析。没有研究提供关于反馈活动对学习成果影响的信息。所有研究都符合柯克帕特里克的第二级评估技术技能或可量化知识。没有研究评估更复杂的任务,如学习者在工作场所的行为。关于训练数据集和版权问题的信息不足。

结论

分析结果表明,目前关于人工智能驱动的干预措施在卫生专业教育中可衡量教育成果的证据不足。需要采用严格方法学的进一步研究。本研究还强调,在评估基于人工智能的教育研究质量方面没有直接的指南,并提出了一系列应考虑的标准。

试验注册

方法和纳入标准预先定义,在方案中明确规定并在OSF注册中心(https://osf.io/v5cgp/)注册。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243b/11773843/94aa3a5c0b08/12909_2025_6719_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验