Suppr超能文献

人工智能在健康专业教育实践和学术中的承诺与危险。

The Promise and Perils of Artificial Intelligence in Health Professions Education Practice and Scholarship.

出版信息

Acad Med. 2024 May 1;99(5):477-481. doi: 10.1097/ACM.0000000000005636. Epub 2024 Jan 24.

Abstract

Artificial intelligence (AI) methods, especially machine learning and natural language processing, are increasingly affecting health professions education (HPE), including the medical school application and selection processes, assessment, and scholarship production. The rise of large language models over the past 18 months, such as ChatGPT, has raised questions about how best to incorporate these methods into HPE. The lack of training in AI among most HPE faculty and scholars poses an important challenge in facilitating such discussions. In this commentary, the authors provide a primer on the AI methods most often used in the practice and scholarship of HPE, discuss the most pressing challenges and opportunities these tools afford, and underscore that these methods should be understood as part of the larger set of statistical tools available.Despite their ability to process huge amounts of data and their high performance completing some tasks, AI methods are only as good as the data on which they are trained. Of particular importance is that these models can perpetuate the biases that are present in those training datasets, and they can be applied in a biased manner by human users. A minimum set of expectations for the application of AI methods in HPE practice and scholarship is discussed in this commentary, including the interpretability of the models developed and the transparency needed into the use and characteristics of such methods.The rise of AI methods is affecting multiple aspects of HPE including raising questions about how best to incorporate these models into HPE practice and scholarship. In this commentary, we provide a primer on the AI methods most often used in HPE and discuss the most pressing challenges and opportunities these tools afford.

摘要

人工智能 (AI) 方法,尤其是机器学习和自然语言处理,越来越多地影响着健康职业教育 (HPE),包括医学院的申请和选拔过程、评估和学术研究。在过去的 18 个月里,大型语言模型(如 ChatGPT)的兴起引发了人们对如何将这些方法最好地融入 HPE 的质疑。大多数 HPE 教师和学者缺乏 AI 培训,这是促进此类讨论的一个重要挑战。在这篇评论中,作者提供了一个关于 HPE 实践和学术研究中最常使用的 AI 方法的入门介绍,讨论了这些工具带来的最紧迫的挑战和机遇,并强调这些方法应该被理解为可用的统计工具的更大集合的一部分。

尽管 AI 方法能够处理大量数据并且在完成某些任务方面表现出色,但它们的性能仅与它们所训练的数据一样好。特别重要的是,这些模型可以延续训练数据集中存在的偏见,并且可以被人类用户以有偏见的方式应用。本评论讨论了在 HPE 实践和学术研究中应用 AI 方法的最低期望,包括开发的模型的可解释性以及对这些方法的使用和特性所需的透明度。

AI 方法的兴起正在影响 HPE 的多个方面,包括如何最好地将这些模型融入 HPE 实践和学术研究的问题。在这篇评论中,我们提供了一个关于 HPE 中最常用的 AI 方法的入门介绍,并讨论了这些工具带来的最紧迫的挑战和机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验