David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, United States.
J Am Chem Soc. 2020 Nov 18;142(46):19715-19721. doi: 10.1021/jacs.0c09691. Epub 2020 Nov 3.
Polymer fibers with specific chemical and mechanical properties are key components of many biomaterials used for regenerative medicine and drug delivery. Here, we develop a bioinspired, low-energy process to produce mechanically tunable biopolymer fibers drawn from aqueous solutions. Hyaluronic acid (HA) forms dynamic cross-links with branched polyethylene glycol polymers end-functionalized with boronic acids of varied structure to produce extensible polymer networks. This dynamic fiber precursor (DFP) is directly drawn by pultrusion into HA fibers that display high aspect ratios, ranging from 4 to 20 μm in diameter and up to ∼10 m in length. Dynamic rheology measurements of the DFP and tensile testing of the resulting fibers reveal design considerations to tune the propensity for fiber formation and fiber mechanical properties, including the effect of polymer structure and concentration on elastic modulus, tensile strength, and ultimate strain. The materials' humidity-responsive contractile behavior, a unique property of spider silks rarely observed in synthetic materials, highlights possibilities for further biomimetic and stimulus-responsive fiber applications. This work demonstrates that chemical modification of dynamic interactions can be used to tune the mechanical properties of pultrusion-based fibers and their precursors.
具有特定化学和机械性能的聚合物纤维是许多用于再生医学和药物输送的生物材料的关键组成部分。在这里,我们开发了一种受生物启发的、低能量的方法,用于从水溶液中生产可拉伸的生物聚合物纤维。透明质酸 (HA) 与支化聚乙二醇聚合物形成动态交联,支化聚乙二醇聚合物的末端官能化有硼酸,硼酸的结构各异,从而产生可拉伸的聚合物网络。这种动态纤维前体 (DFP) 可通过拉挤直接制成 HA 纤维,HA 纤维具有高纵横比,直径从 4 到 20 μm 不等,长度可达约 10 m。对 DFP 的动态流变学测量和对所得纤维的拉伸测试揭示了设计考虑因素,以调整纤维形成和纤维机械性能的倾向,包括聚合物结构和浓度对弹性模量、拉伸强度和极限应变的影响。该材料的湿度响应收缩行为是蜘蛛丝的一个独特特性,在合成材料中很少观察到,这突出了进一步仿生和刺激响应纤维应用的可能性。这项工作表明,动态相互作用的化学修饰可用于调节基于拉挤的纤维及其前体的机械性能。