Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America.
Materials Research Science and Engineering Center, Columbia University, New York, NY 10027, United States of America.
Biofabrication. 2021 Jun 28;13(3). doi: 10.1088/1758-5090/ac0964.
Green manufacturing has emerged across industries, propelled by a growing awareness of the negative environmental and health impacts associated with traditional practices. In the biomaterials industry, electrospinning is a ubiquitous fabrication method for producing nano- to micro-scale fibrous meshes that resemble native tissues, but this process traditionally utilizes solvents that are environmentally hazardous and pose a significant barrier to industrial scale-up and clinical translation. Applying sustainability principles to biomaterial production, we have developed a 'green electrospinning' process by systematically testing biologically benign solvents (U.S. Food and Drug Administration Q3C Class 3), and have identified acetic acid as a green solvent that exhibits low ecological impact (global warming potential (GWP) = 1.40 COeq. kg/L) and supports a stable electrospinning jet under routine fabrication conditions. By tuning electrospinning parameters, such as needle-plate distance and flow rate, we updated the fabrication of widely utilized biomedical polymers (e.g. poly-α-hydroxyesters, collagen), polymer blends, polymer-ceramic composites, and growth factor delivery systems. Resulting 'green' fibers and composites are comparable to traditional meshes in terms of composition, chemistry, architecture, mechanical properties, and biocompatibility. Interestingly, material properties of green synthetic fibers are more biomimetic than those of traditionally electrospun fibers, doubling in ductility (91.86 ± 35.65 vs. 45 ± 15.07%,= 10,< 0.05) without compromising yield strength (1.32 ± 0.26 vs. 1.38 ± 0.32 MPa) or ultimate tensile strength (2.49 ± 0.55 vs. 2.36 ± 0.45 MPa). Most importantly, green electrospinning proves advantageous for biofabrication, rendering a greater protection of growth factors during fiber formation (72.30 ± 1.94 vs. 62.87 ± 2.49% alpha helical content,= 3,< 0.05) and recapitulating native ECM mechanics in the fabrication of biopolymer-based meshes (16.57 ± 3.92% ductility, 33.38 ± 30.26 MPa elastic modulus, 1.30 ± 0.19 MPa yield strength, and 2.13 ± 0.36 MPa ultimate tensile strength,= 10). The eco-conscious approach demonstrated here represents a paradigm shift in biofabrication, and will accelerate the translation of scalable biomaterials and biomimetic scaffolds for tissue engineering and regenerative medicine.
绿色制造已经在各个行业中崭露头角,这是由于人们对传统实践所带来的负面环境和健康影响的认识不断提高。在生物材料行业中,静电纺丝是一种普遍的制造方法,用于生产类似于天然组织的纳米到微米尺度的纤维网,但这个过程传统上使用对环境有害的溶剂,这对工业规模扩大和临床转化构成了重大障碍。我们将可持续发展原则应用于生物材料生产,通过系统测试生物相容性良好的溶剂(美国食品和药物管理局 Q3C 第 3 类),已经确定乙酸是一种绿色溶剂,具有较低的生态影响(全球变暖潜能值 (GWP) = 1.40 COeq. kg/L),并且在常规制造条件下支持稳定的静电纺丝射流。通过调整静电纺丝参数,如针板距离和流速,我们更新了广泛使用的生物医学聚合物(例如聚α-羟基酯、胶原蛋白)、聚合物共混物、聚合物-陶瓷复合材料和生长因子输送系统的制造。由此产生的“绿色”纤维和复合材料在组成、化学性质、结构、机械性能和生物相容性方面与传统网片相当。有趣的是,绿色合成纤维的材料性能比传统静电纺丝纤维更仿生,延展性提高了一倍(91.86±35.65%比 45±15.07%,=10,<0.05),而屈服强度(1.32±0.26 MPa 比 1.38±0.32 MPa)和极限拉伸强度(2.49±0.55 MPa 比 2.36±0.45 MPa)没有降低。最重要的是,绿色静电纺丝在生物制造方面具有优势,在纤维形成过程中更好地保护生长因子(72.30±1.94%α螺旋含量,=3,<0.05),并在生物聚合物基网片的制造中再现天然细胞外基质力学性能(16.57±3.92%延展性,33.38±30.26 MPa 弹性模量,1.30±0.19 MPa 屈服强度和 2.13±0.36 MPa 极限拉伸强度,=10)。这里展示的环保方法代表了生物制造的范式转变,将加速可扩展生物材料和仿生支架的转化,用于组织工程和再生医学。