Ghosh Souvik, Ghosh Ambarish
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India.
Sci Robot. 2018 Jan 10;3(14). doi: 10.1126/scirobotics.aaq0076.
An important goal in nanotechnology is to control and manipulate submicrometer objects in fluidic environments, for which optical traps based on strongly localized electromagnetic fields around plasmonic nanostructures can provide a promising solution. Conventional plasmonics based trapping occurs at predefined spots on the surface of a nanopatterned substrate and is severely speed-limited by the diffusion of colloidal objects into the trapping volume. As we demonstrate, these limitations can be overcome by integrating plasmonic nanostructures with magnetically driven helical microrobots and maneuvering the resultant mobile nanotweezers (MNTs) under optical illumination. These nanotweezers can be remotely maneuvered within the bulk fluid and temporarily stamped onto the microfluidic chamber surface. The working range of these MNTs matches that of state-of-the-art plasmonic tweezers and allows selective pickup, transport, release, and positioning of submicrometer objects with great speed and accuracy. The MNTs can be used in standard microfluidic chambers to manipulate one or many nano-objects in three dimensions and are applicable to a variety of materials, including bacteria and fluorescent nanodiamonds. MNTs may allow previously unknown capabilities in optical nanomanipulation by combining the strengths of two recent advances in nanotechnology.
纳米技术的一个重要目标是在流体环境中控制和操纵亚微米级物体,基于等离子体纳米结构周围强局域电磁场的光镊为此提供了一个有前景的解决方案。传统的基于等离子体激元的捕获发生在纳米图案化衬底表面的预定义位置,并且由于胶体物体扩散到捕获体积中而受到严重的速度限制。正如我们所展示的,通过将等离子体纳米结构与磁驱动螺旋微机器人集成,并在光照下操纵所得的移动纳米镊子(MNTs),可以克服这些限制。这些纳米镊子可以在主体流体中远程操纵,并临时压印到微流体腔室表面。这些MNTs的工作范围与最先进的等离子体镊子相匹配,并允许以极高的速度和精度选择性地拾取、运输、释放和定位亚微米级物体。MNTs可用于标准微流体腔室中,在三维空间中操纵一个或多个纳米物体,并且适用于多种材料,包括细菌和荧光纳米金刚石。通过结合纳米技术的两项最新进展的优势,MNTs可能会带来光学纳米操纵中以前未知的能力。