Burdukiewicz Michał, Sidorczuk Katarzyna, Rafacz Dominik, Pietluch Filip, Bąkała Mateusz, Słowik Jadwiga, Gagat Przemysław
Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany.
Why R? Foundation, 03-214 Warsaw, Poland.
Pharmaceutics. 2020 Oct 31;12(11):1045. doi: 10.3390/pharmaceutics12111045.
Antimicrobial peptides (AMPs) constitute a diverse group of bioactive molecules that provide multicellular organisms with protection against microorganisms, and microorganisms with weaponry for competition. Some AMPs can target cancer cells; thus, they are called anticancer peptides (ACPs). Due to their small size, positive charge, hydrophobicity and amphipathicity, AMPs and ACPs interact with negatively charged components of biological membranes. AMPs preferentially permeabilize microbial membranes, but ACPs additionally target mitochondrial and plasma membranes of cancer cells. The preference towards mitochondrial membranes is explained by their membrane potential, membrane composition resulting from α-proteobacterial origin and the fact that mitochondrial targeting signals could have evolved from AMPs. Taking into account the therapeutic potential of ACPs and millions of deaths due to cancer annually, it is of vital importance to find new cationic peptides that selectively destroy cancer cells. Therefore, to reduce the costs of experimental research, we have created a robust computational tool, CancerGram, that uses -grams and random forests for predicting ACPs. Compared to other ACP classifiers, CancerGram is the first three-class model that effectively classifies peptides into: ACPs, AMPs and non-ACPs/non-AMPs, with AU1U amounting to 0.89 and a Kappa statistic of 0.65. CancerGram is available as a web server and R package on GitHub.
抗菌肽(AMPs)是一类多样的生物活性分子,它们为多细胞生物提供抵御微生物的保护,同时也为微生物提供竞争武器。一些抗菌肽可以靶向癌细胞;因此,它们被称为抗癌肽(ACPs)。由于其尺寸小、带正电荷、具有疏水性和两亲性,抗菌肽和抗癌肽能够与生物膜带负电荷的成分相互作用。抗菌肽优先使微生物膜通透性增加,但抗癌肽还额外靶向癌细胞的线粒体膜和质膜。对抗癌肽对线粒体膜的偏好的解释是其膜电位、源于α-变形菌的膜组成以及线粒体靶向信号可能从抗菌肽进化而来这一事实。考虑到抗癌肽的治疗潜力以及每年因癌症导致的数百万人死亡,寻找能够选择性破坏癌细胞的新型阳离子肽至关重要。因此,为了降低实验研究成本,我们创建了一个强大的计算工具CancerGram,它使用 -gram和随机森林来预测抗癌肽。与其他抗癌肽分类器相比,CancerGram是第一个能够有效将肽分为抗癌肽、抗菌肽和非抗癌肽/非抗菌肽的三类模型,其AUC值为0.89,卡帕统计量为0.65。CancerGram可作为网络服务器和R包在GitHub上获取。