Lerksuthirat Tassanee, On-Yam Pasinee, Chitphuk Sermsiri, Stitchantrakul Wasana, Newburg David S, Morrow Ardythe L, Hongeng Suradej, Chiangjong Wararat, Chutipongtanate Somchai
Research Center Faculty of Medicine Ramathibodi Hospital Mahidol University Bangkok 10400 Thailand.
Pediatric Translational Research Unit Department of Pediatrics Faculty of Medicine Ramathibodi Hospital Mahidol University Bangkok 10400 Thailand.
Glob Chall. 2023 Jan 12;7(3):2200213. doi: 10.1002/gch2.202200213. eCollection 2023 Mar.
Anticancer peptides (ACPs) are rising as a new strategy for cancer therapy. However, traditional laboratory screening to find and identify novel ACPs from hundreds to thousands of peptides is costly and time consuming. Here, a sequential procedure is applied to identify candidate ACPs from a computer-generated peptide library inspired by alpha-lactalbumin, a milk protein with known anticancer properties. A total of 2688 distinct peptides, 5-25 amino acids in length, are generated from alpha-lactalbumin. In silico ACP screening using the physicochemical and structural filters and three machine learning models lead to the top candidate peptides ALA-A1 and ALA-A2. In vitro screening against five human cancer cell lines supports ALA-A2 as the positive hit. ALA-A2 selectively kills A549 lung cancer cells in a dose-dependent manner, with no hemolytic side effects, and acts as a cell penetrating peptide without membranolytic effects. Sequential window acquisition of all theorical fragment ions-proteomics and functional validation reveal that ALA-A2 induces autophagy to mediate lung cancer cell death. This approach to identify ALA-A2 is time and cost-effective. Further investigations are warranted to elucidate the exact intracellular targets of ALA-A2. Moreover, these findings support the use of larger computational peptide libraries built upon multiple proteins to further advance ACP research and development.
抗癌肽(ACPs)正作为一种新的癌症治疗策略兴起。然而,传统的实验室筛选方法,即从成百上千种肽中寻找和鉴定新型抗癌肽,成本高昂且耗时。在此,我们采用了一种连续的程序,从受α-乳白蛋白启发而生成的计算机肽库中鉴定候选抗癌肽,α-乳白蛋白是一种具有已知抗癌特性的乳蛋白。从α-乳白蛋白中总共生成了2688种不同的肽,长度为5至25个氨基酸。利用物理化学和结构筛选以及三种机器学习模型进行的计算机抗癌肽筛选,得出了顶级候选肽ALA-A1和ALA-A2。针对五种人类癌细胞系的体外筛选支持ALA-A2为阳性结果。ALA-A2以剂量依赖性方式选择性杀死A549肺癌细胞,无溶血副作用,且作为一种细胞穿透肽而无膜溶解作用。所有理论碎片离子的顺序窗口采集-蛋白质组学和功能验证表明,ALA-A2诱导自噬以介导肺癌细胞死亡。这种鉴定ALA-A2的方法具有时间和成本效益。有必要进一步研究以阐明ALA-A2的确切细胞内靶点。此外,这些发现支持使用基于多种蛋白质构建的更大的计算肽库,以进一步推进抗癌肽的研发。