Suppr超能文献

用于空气质量监测或检测气体泄漏事件的 LoRa 传感器网络开发。

LoRa Sensor Network Development for Air Quality Monitoring or Detecting Gas Leakage Events.

机构信息

Electronic Engineering, Uiversitat Rovira i Virgili, MINOS, 43007 Tarragona, Spain.

JLM Innovation GmbH, 72070 Tubingen, Germany.

出版信息

Sensors (Basel). 2020 Oct 31;20(21):6225. doi: 10.3390/s20216225.

Abstract

During the few last years, indoor and outdoor Air Quality Monitoring (AQM) has gained a lot of interest among the scientific community due to its direct relation with human health. The Internet of Things (IoT) and, especially, Wireless Sensor Networks (WSN) have given rise to the development of wireless AQM portable systems. This paper presents the development of a LoRa (short for long-range) based sensor network for AQM and gas leakage events detection. The combination of both a commercial gas sensor and a resistance measurement channel for graphene chemoresistive sensors allows both the calculation of an Air Quality Index based on the concentration of reducing species such as volatile organic compounds (VOCs) and CO, and it also makes possible the detection of NO, which is an important air pollutant. The graphene sensor tested with the LoRa nodes developed allows the detection of NO pollution in just 5 min as well as enables monitoring sudden changes in the background level of this pollutant in the atmosphere. The capability of the system of detecting both reducing and oxidizing pollutant agents, alongside its low-cost, low-power, and real-time monitoring features, makes this a solution suitable to be used in wireless AQM and early warning systems.

摘要

在过去的几年中,由于室内外空气质量监测(AQM)与人类健康直接相关,因此引起了科学界的极大兴趣。物联网(IoT),特别是无线传感器网络(WSN)的发展催生了无线 AQM 便携式系统。本文介绍了一种基于 LoRa(远距离)的传感器网络的开发,用于 AQM 和气体泄漏事件检测。商用气体传感器和用于石墨烯电阻传感器的电阻测量通道的结合,不仅可以根据挥发性有机化合物(VOC)和 CO 等还原物种的浓度计算空气质量指数,还可以检测到 NO,这是一种重要的空气污染物。用开发的 LoRa 节点测试的石墨烯传感器能够在短短 5 分钟内检测到 NO 污染,并且能够监测大气中这种污染物背景水平的突然变化。该系统能够同时检测还原和氧化污染物,具有低成本、低功耗和实时监测的特点,因此非常适合用于无线 AQM 和预警系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f73c/7672618/52cc255c06e2/sensors-20-06225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验