Colonna Samuele, Battegazzore Daniele, Eleuteri Matteo, Arrigo Rossella, Fina Alberto
Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Viale Teresa Michel 5, 15121 Alessandria, Italy.
Nanomaterials (Basel). 2020 Oct 30;10(11):2167. doi: 10.3390/nano10112167.
Different types of graphene-related materials (GRM) are industrially available and have been exploited for thermal conductivity enhancement in polymers. These include materials with very different features, in terms of thickness, lateral size and composition, especially concerning the oxygen to carbon ratio and the possible presence of surface functionalization. Due to the variability of GRM properties, the differences in polymer nanocomposites preparation methods and the microstructures obtained, a large scatter of thermal conductivity performance is found in literature. However, detailed correlations between GRM-based nanocomposites features, including nanoplatelets thickness and size, defectiveness, composition and dispersion, with their thermal conductivity remain mostly undefined. In the present paper, the thermal conductivity of GRM-based polymer nanocomposites, prepared by melt polymerization of cyclic polybutylene terephtalate oligomers and exploiting 13 different GRM grades, was investigated. The selected GRM, covering a wide range of specific surface area, size and defectiveness, secure a sound basis for the understanding of the effect of GRM properties on the thermal conductivity of their relevant polymer nanocomposites. Indeed, the obtained thermal conductivity appeares to depend on the interplay between the above GRM feature. In particular, the combination of low GRM defectiveness and high filler percolation density was found to maximize the thermal conductivity of nanocomposites.
不同类型的石墨烯相关材料(GRM)在工业上已有供应,并已被用于提高聚合物的热导率。这些材料在厚度、横向尺寸和组成方面具有非常不同的特性,特别是在氧碳比以及可能存在的表面官能化方面。由于GRM性质的变异性、聚合物纳米复合材料制备方法的差异以及所获得的微观结构,文献中发现热导率性能存在很大的分散性。然而,基于GRM的纳米复合材料的特征(包括纳米片层的厚度和尺寸、缺陷性、组成和分散性)与其热导率之间的详细相关性大多仍不明确。在本文中,通过环状聚对苯二甲酸丁二醇酯低聚物的熔融聚合制备了基于GRM的聚合物纳米复合材料,并使用了13种不同等级的GRM,对其热导率进行了研究。所选择的GRM涵盖了广泛的比表面积、尺寸和缺陷性,为理解GRM性质对其相关聚合物纳米复合材料热导率的影响奠定了坚实的基础。事实上,所获得的热导率似乎取决于上述GRM特征之间的相互作用。特别是,发现低GRM缺陷性和高填料渗滤密度的组合可使纳米复合材料的热导率最大化。