Suppr超能文献

基于无人机图像的路面坑洼识别的路面监测系统的建筑多智能体系统。

An Architectural Multi-Agent System for a Pavement Monitoring System with Pothole Recognition in UAV Images.

机构信息

Expert Systems and Applications Lab-ESALAB, Faculty of Science, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain.

Laboratory of Embedded and Distribution Systems, University of Vale do Itajaí, Rua Uruguai 458, C.P. 360, Itajaí 88302-901, Brazil.

出版信息

Sensors (Basel). 2020 Oct 30;20(21):6205. doi: 10.3390/s20216205.

Abstract

In recent years, maintenance work on public transport routes has drastically decreased in many countries due to difficult economic situations. The various studies that have been conducted by groups of drivers and groups related to road safety concluded that accidents are increasing due to the poor conditions of road surfaces, even affecting the condition of vehicles through costly breakdowns. Currently, the processes of detecting any type of damage to a road are carried out manually or are based on the use of a road vehicle, which incurs a high labor cost. To solve this problem, many research centers are investigating image processing techniques to identify poor-condition road areas using deep learning algorithms. The main objective of this work is to design of a distributed platform that allows the detection of damage to transport routes using drones and to provide the results of the most important classifiers. A case study is presented using a multi-agent system based on PANGEA that coordinates the different parts of the architecture using techniques based on ubiquitous computing. The results obtained by means of the customization of the You Only Look Once (YOLO) v4 classifier are promising, reaching an accuracy of more than 95%. The images used have been published in a dataset for use by the scientific community.

摘要

近年来,由于经济困难,许多国家大幅减少了公共交通线路的维护工作。由驾驶员群体和与道路安全相关的群体进行的各种研究得出结论,由于路面状况不佳,事故正在增加,甚至通过昂贵的故障影响车辆状况。目前,检测道路任何类型损坏的过程要么手动进行,要么基于使用道路车辆,这会产生高昂的劳动力成本。为了解决这个问题,许多研究中心正在研究图像处理技术,以使用深度学习算法识别路况不佳的道路区域。这项工作的主要目的是设计一个分布式平台,该平台允许使用无人机检测运输路线的损坏,并提供最重要的分类器的结果。本文提出了一个基于 PANGEA 的多智能体系统的案例研究,该系统使用基于普适计算的技术协调架构的不同部分。通过定制 You Only Look Once (YOLO) v4 分类器获得的结果很有希望,准确率超过 95%。所使用的图像已在一个数据集上发布,供科学界使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32be/7663208/a306d188d6ca/sensors-20-06205-g0A1.jpg

相似文献

2
Computer Vision Based Pothole Detection under Challenging Conditions.
Sensors (Basel). 2022 Nov 17;22(22):8878. doi: 10.3390/s22228878.
4
RDD2020: An annotated image dataset for automatic road damage detection using deep learning.
Data Brief. 2021 May 12;36:107133. doi: 10.1016/j.dib.2021.107133. eCollection 2021 Jun.
5
A Novel Approach for UAV Image Crack Detection.
Sensors (Basel). 2022 Apr 26;22(9):3305. doi: 10.3390/s22093305.
6
Adaptive road crack detection system by pavement classification.
Sensors (Basel). 2011;11(10):9628-57. doi: 10.3390/s111009628. Epub 2011 Oct 12.
8
Automatic Crack Detection on Road Pavements Using Encoder-Decoder Architecture.
Materials (Basel). 2020 Jul 2;13(13):2960. doi: 10.3390/ma13132960.
9
Monitoring and Identification of Road Construction Safety Factors via UAV.
Sensors (Basel). 2022 Nov 14;22(22):8797. doi: 10.3390/s22228797.

引用本文的文献

1
UAV-Based Image and LiDAR Fusion for Pavement Crack Segmentation.
Sensors (Basel). 2023 Nov 21;23(23):9315. doi: 10.3390/s23239315.
5
Road Condition Monitoring Using Smart Sensing and Artificial Intelligence: A Review.
Sensors (Basel). 2022 Apr 15;22(8):3044. doi: 10.3390/s22083044.
6
Towards Fully Autonomous UAVs: A Survey.
Sensors (Basel). 2021 Sep 16;21(18):6223. doi: 10.3390/s21186223.
7
Detection of Road-Surface Anomalies Using a Smartphone Camera and Accelerometer.
Sensors (Basel). 2021 Jan 14;21(2):561. doi: 10.3390/s21020561.

本文引用的文献

3
SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities.
Sensors (Basel). 2020 Aug 15;20(16):4587. doi: 10.3390/s20164587.
4
Melanoma Diagnosis Using Deep Learning and Fuzzy Logic.
Diagnostics (Basel). 2020 Aug 9;10(8):577. doi: 10.3390/diagnostics10080577.
7
Ambient agents: embedded agents for remote control and monitoring using the PANGEA platform.
Sensors (Basel). 2014 Jul 31;14(8):13955-79. doi: 10.3390/s140813955.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验