Suppr超能文献

僵局的智慧:共识和聚类作为提高集体准确性的过滤机制。

The wisdom of stalemates: consensus and clustering as filtering mechanisms for improving collective accuracy.

机构信息

Bernstein Center for Computational Neuroscience, Berlin, Germany.

Max Planck Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany.

出版信息

Proc Biol Sci. 2020 Nov 11;287(1938):20201802. doi: 10.1098/rspb.2020.1802. Epub 2020 Nov 4.

Abstract

Groups of organisms, from bacteria to fish schools to human societies, depend on their ability to make accurate decisions in an uncertain world. Most models of collective decision-making assume that groups reach a consensus during a decision-making bout, often through simple majority rule. In many natural and sociological systems, however, groups may fail to reach consensus, resulting in stalemates. Here, we build on opinion dynamics and collective wisdom models to examine how stalemates may affect the wisdom of crowds. For simple environments, where individuals have access to independent sources of information, we find that stalemates improve collective accuracy by selectively filtering out incorrect decisions (an effect we call stalemate filtering). In complex environments, where individuals have access to both shared and independent information, this effect is even more pronounced, restoring the wisdom of crowds in regions of parameter space where large groups perform poorly when making decisions using majority rule. We identify network properties that tune the system between consensus and accuracy, providing mechanisms by which animals, or evolution, could dynamically adjust the collective decision-making process in response to the reward structure of the possible outcomes. Overall, these results highlight the adaptive potential of stalemate filtering for improving the decision-making abilities of group-living animals.

摘要

从细菌到鱼群再到人类社会,各种生物群体都依赖于它们在不确定的世界中做出准确决策的能力。大多数群体决策模型都假设群体在决策过程中达成共识,通常是通过简单的多数规则。然而,在许多自然和社会学系统中,群体可能无法达成共识,从而导致僵局。在这里,我们基于观点动态和集体智慧模型来研究僵局如何影响群体智慧。对于个体可以访问独立信息源的简单环境,我们发现僵局通过选择性地过滤掉错误决策来提高集体准确性(我们称之为僵局过滤)。在个体可以访问共享和独立信息的复杂环境中,这种效果更加明显,在使用多数规则做出决策时表现不佳的参数空间区域中恢复了群体智慧。我们确定了调节系统在共识和准确性之间的网络特性,提供了动物或进化可以根据可能结果的奖励结构动态调整集体决策过程的机制。总的来说,这些结果强调了僵局过滤在提高群居动物决策能力方面的自适应潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验