Suppr超能文献

双重编码理论解释了神经决策中的双相集体计算。

Dual Coding Theory Explains Biphasic Collective Computation in Neural Decision-Making.

作者信息

Daniels Bryan C, Flack Jessica C, Krakauer David C

机构信息

ASU-SFI Center for Biosocial Complex Systems, Arizona State UniversityTempe, AZ, United States.

Santa Fe InstituteSanta Fe, NM, United States.

出版信息

Front Neurosci. 2017 Jun 6;11:313. doi: 10.3389/fnins.2017.00313. eCollection 2017.

Abstract

A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a "coding duality" in which there are accumulation and consensus formation processes distinguished by different timescales.

摘要

认知神经科学中的一个核心问题是,在整个生物体层面上,单一、连贯的决策是如何从大量神经元的分布式行为中产生的,而这些神经元只有部分重叠的信息。我们通过研究在视觉运动方向辨别任务期间从一个具有169个通道的多电极阵列记录的神经放电行为来解决这个问题。众所周知,在这个任务中,神经放电行为有两个不同的阶段。在这里我们表明,第一阶段是一个分布式或不可压缩阶段,在这个阶段,通过汇集来自许多细胞的信息,决策的不确定性会大幅降低。第二阶段是一个冗余或可压缩阶段,在这个阶段,众多单个细胞包含了第一阶段群体层面上存在的所有信息,以至于单个细胞的放电行为足以预测受试者的决策。使用一个基于经验的动力学建模框架,我们表明,在第一阶段,具有低冗余度的大细胞群体通过在对称破缺转变附近的临界减速产生一个缓慢的信息聚合时间尺度。我们的模型表明,在第二阶段增加集体放大自然会导致更快的信息汇集和共识形成时间尺度。基于我们的结果以及文献中的其他结果,我们提出集体计算的一个普遍特征是一种“编码二元性”,其中存在以不同时间尺度区分的积累和共识形成过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca86/5459926/32443518f2de/fnins-11-00313-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验