基于腹腔镜任务视频标注的手术绩效分析与分类。

Surgical Performance Analysis and Classification Based on Video Annotation of Laparoscopic Tasks.

机构信息

Medical School, National and Kapodistrian University of Athens, Athens, Greece.

Department of Pediatric and Congenital Heart Surgery, Onassis Heart Surgery Centre, Athens, Greece.

出版信息

JSLS. 2020 Oct-Dec;24(4). doi: 10.4293/JSLS.2020.00057.

Abstract

BACKGROUND AND OBJECTIVES

Current approaches in surgical skills assessment employ virtual reality simulators, motion sensors, and task-specific checklists. Although accurate, these methods may be complex in the interpretation of the generated measures of performance. The aim of this study is to propose an alternative methodology for skills assessment and classification, based on video annotation of laparoscopic tasks.

METHODS

Two groups of 32 trainees (students and residents) performed two laparoscopic tasks: peg transfer (PT) and knot tying (KT). Each task was annotated via a video analysis software based on a vocabulary of eight surgical gestures (surgemes) that denote the elementary gestures required to perform a task. The extracted metrics included duration/counts of each surgeme, penalty events, and counts of sequential surgemes (transitions). Our analysis focused on trainees' skill level comparison and classification using a nearest neighbor approach. The classification was assessed via accuracy, sensitivity, and specificity.

RESULTS

For PT, almost all metrics showed significant performance difference between the two groups ( < 0.001). Residents were able to complete the task with fewer, shorter surgemes and fewer penalty events. Moreover, residents performed significantly fewer transitions ( < 0.05). For KT, residents performed two surgemes in significantly shorter time ( < 0.05). The metrics derived from the video annotations were also able to recognize the trainees' skill level with 0.71 - 0.86 accuracy, 0.80 - 1.00 sensitivity, and 0.60 - 0.80 specificity.

CONCLUSION

The proposed technique provides a tool for skills assessment and experience classification of surgical trainees, as well as an intuitive way for describing what and how surgemes are performed.

摘要

背景与目的

目前的手术技能评估方法采用虚拟现实模拟器、运动传感器和特定任务清单。虽然这些方法很准确,但在解释生成的绩效衡量标准时可能会很复杂。本研究旨在提出一种基于腹腔镜任务视频注释的替代技能评估和分类方法。

方法

两组 32 名学员(学生和住院医师)完成了两项腹腔镜任务:针转移(PT)和打结(KT)。每个任务都通过基于包含表示执行任务所需的基本动作的 8 个手术动作(surgemes)词汇的视频分析软件进行注释。提取的指标包括每个 surgeme 的持续时间/计数、罚分事件和连续 surgemes(过渡)的计数。我们的分析侧重于使用最近邻方法进行学员技能水平比较和分类。分类通过准确性、敏感性和特异性进行评估。

结果

对于 PT,几乎所有指标在两组之间都显示出显著的性能差异( < 0.001)。住院医师能够使用更少、更短的 surgemes 和更少的罚分事件完成任务。此外,住院医师执行的过渡明显更少( < 0.05)。对于 KT,住院医师执行两个 surgemes 的时间明显更短( < 0.05)。从视频注释中得出的指标也能够以 0.71-0.86 的准确性、0.80-1.00 的敏感性和 0.60-0.80 的特异性识别学员的技能水平。

结论

所提出的技术为外科学员的技能评估和经验分类提供了一种工具,以及一种直观的方式来描述执行 surgemes 的方式和内容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd3f/7592956/8b79cbc728a8/LS-JSLS200008F001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索