Suppr超能文献

机器人手术中手势分割与识别的数据集及基准

A Dataset and Benchmarks for Segmentation and Recognition of Gestures in Robotic Surgery.

作者信息

Ahmidi Narges, Tao Lingling, Sefati Shahin, Gao Yixin, Lea Colin, Haro Benjamin Bejar, Zappella Luca, Khudanpur Sanjeev, Vidal Rene, Hager Gregory D

出版信息

IEEE Trans Biomed Eng. 2017 Sep;64(9):2025-2041. doi: 10.1109/TBME.2016.2647680. Epub 2017 Jan 4.

Abstract

OBJECTIVE

State-of-the-art techniques for surgical data analysis report promising results for automated skill assessment and action recognition. The contributions of many of these techniques, however, are limited to study-specific data and validation metrics, making assessment of progress across the field extremely challenging.

METHODS

In this paper, we address two major problems for surgical data analysis: First, lack of uniform-shared datasets and benchmarks, and second, lack of consistent validation processes. We address the former by presenting the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS), a public dataset that we have created to support comparative research benchmarking. JIGSAWS contains synchronized video and kinematic data from multiple performances of robotic surgical tasks by operators of varying skill. We address the latter by presenting a well-documented evaluation methodology and reporting results for six techniques for automated segmentation and classification of time-series data on JIGSAWS. These techniques comprise four temporal approaches for joint segmentation and classification: hidden Markov model, sparse hidden Markov model (HMM), Markov semi-Markov conditional random field, and skip-chain conditional random field; and two feature-based ones that aim to classify fixed segments: bag of spatiotemporal features and linear dynamical systems.

RESULTS

Most methods recognize gesture activities with approximately 80% overall accuracy under both leave-one-super-trial-out and leave-one-user-out cross-validation settings.

CONCLUSION

Current methods show promising results on this shared dataset, but room for significant progress remains, particularly for consistent prediction of gesture activities across different surgeons.

SIGNIFICANCE

The results reported in this paper provide the first systematic and uniform evaluation of surgical activity recognition techniques on the benchmark database.

摘要

目的

用于手术数据分析的先进技术在自动技能评估和动作识别方面报告了有前景的结果。然而,这些技术中的许多贡献仅限于特定研究的数据和验证指标,这使得评估该领域的进展极具挑战性。

方法

在本文中,我们解决手术数据分析的两个主要问题:第一,缺乏统一共享的数据集和基准;第二,缺乏一致的验证过程。我们通过展示约翰霍普金斯大学 - 信息科学研究所手势与技能评估工作集(JIGSAWS)来解决前者,这是一个我们创建的公共数据集,用于支持比较研究基准测试。JIGSAWS包含来自不同技能水平操作者多次机器人手术任务执行的同步视频和运动学数据。我们通过展示一种记录详细的评估方法并报告六种用于JIGSAWS上时间序列数据自动分割和分类技术的结果来解决后者。这些技术包括四种用于联合分割和分类的时间方法:隐马尔可夫模型、稀疏隐马尔可夫模型(HMM)、马尔可夫半马尔可夫条件随机场和跳跃链条件随机场;以及两种基于特征的方法,旨在对固定段进行分类:时空特征袋和线性动态系统。

结果

在留一超级试验和留一用户交叉验证设置下,大多数方法识别手势活动的总体准确率约为80%。

结论

当前方法在这个共享数据集上显示出有前景的结果,但仍有显著进展的空间,特别是在跨不同外科医生一致预测手势活动方面。

意义

本文报告的结果提供了在基准数据库上对外科手术活动识别技术的首次系统和统一评估。

相似文献

2
Automated surgical skill assessment in RMIS training.机器人微创外科手术训练中的自动手术技能评估。
Int J Comput Assist Radiol Surg. 2018 May;13(5):731-739. doi: 10.1007/s11548-018-1735-5. Epub 2018 Mar 16.
3
Surgical gesture segmentation and recognition.手术手势分割与识别。
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):339-46. doi: 10.1007/978-3-642-40760-4_43.
4
Surgical gesture classification from video and kinematic data.基于视频和运动学数据的外科手势分类。
Med Image Anal. 2013 Oct;17(7):732-45. doi: 10.1016/j.media.2013.04.007. Epub 2013 Apr 28.
5
Gesture Recognition in Robotic Surgery: A Review.机器人手术中的手势识别:综述。
IEEE Trans Biomed Eng. 2021 Jun;68(6):2021-2035. doi: 10.1109/TBME.2021.3054828. Epub 2021 May 21.

引用本文的文献

7
A real-time approach for surgical activity recognition and prediction based on transformer models in robot-assisted surgery.
Int J Comput Assist Radiol Surg. 2025 Apr;20(4):743-752. doi: 10.1007/s11548-024-03306-9. Epub 2025 Jan 12.

本文引用的文献

1
Query-by-example surgical activity detection.基于示例的手术活动检测
Int J Comput Assist Radiol Surg. 2016 Jun;11(6):987-96. doi: 10.1007/s11548-016-1386-3. Epub 2016 Apr 12.
2
Analysis of the Structure of Surgical Activity for a Suturing and Knot-Tying Task.缝合和打结任务的手术活动结构分析
PLoS One. 2016 Mar 7;11(3):e0149174. doi: 10.1371/journal.pone.0149174. eCollection 2016.
5
Surgical gesture segmentation and recognition.手术手势分割与识别。
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):339-46. doi: 10.1007/978-3-642-40760-4_43.
8
Surgical gesture classification from video and kinematic data.基于视频和运动学数据的外科手势分类。
Med Image Anal. 2013 Oct;17(7):732-45. doi: 10.1016/j.media.2013.04.007. Epub 2013 Apr 28.
9
Surgical gesture classification from video data.基于视频数据的手术手势分类
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):34-41. doi: 10.1007/978-3-642-33415-3_5.
10
Automatic knowledge-based recognition of low-level tasks in ophthalmological procedures.基于知识的自动识别眼科手术中的低级任务。
Int J Comput Assist Radiol Surg. 2013 Jan;8(1):39-49. doi: 10.1007/s11548-012-0685-6. Epub 2012 Apr 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验