Gao Peng, Zhang Lina, Li Shenggang, Zhou Zixuan, Sun Yuhan
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China.
University of Chinese Academy of Sciences, Beijing 100049, PR China.
ACS Cent Sci. 2020 Oct 28;6(10):1657-1670. doi: 10.1021/acscentsci.0c00976. Epub 2020 Sep 18.
Carbon dioxide (CO) hydrogenation to liquid fuels including gasoline, jet fuel, diesel, methanol, ethanol, and other higher alcohols via heterogeneous catalysis, using renewable energy, not only effectively alleviates environmental problems caused by massive CO emissions, but also reduces our excessive dependence on fossil fuels. In this Outlook, we review the latest development in the design of novel and very promising heterogeneous catalysts for direct CO hydrogenation to methanol, liquid hydrocarbons, and higher alcohols. Compared with methanol production, the synthesis of products with two or more carbons (C) faces greater challenges. Highly efficient synthesis of C products from CO hydrogenation can be achieved by a reaction coupling strategy that first converts CO to carbon monoxide or methanol and then conducts a C-C coupling reaction over a bifunctional/multifunctional catalyst. Apart from the catalytic performance, unique catalyst design ideas, and structure-performance relationship, we also discuss current challenges in catalyst development and perspectives for industrial applications.
利用可再生能源,通过多相催化将二氧化碳(CO₂)加氢转化为包括汽油、喷气燃料、柴油、甲醇、乙醇和其他高级醇在内的液体燃料,不仅能有效缓解大量CO₂排放所造成的环境问题,还能减少我们对化石燃料的过度依赖。在本展望中,我们综述了用于将CO₂直接加氢转化为甲醇、液态烃和高级醇的新型且极有前景的多相催化剂设计的最新进展。与甲醇生产相比,合成含两个或更多碳原子(C)的产物面临更大挑战。通过反应耦合策略可实现由CO₂加氢高效合成含碳产物,该策略首先将CO₂转化为一氧化碳或甲醇,然后在双功能/多功能催化剂上进行C-C耦合反应。除了催化性能、独特的催化剂设计理念以及结构-性能关系外,我们还讨论了当前催化剂开发面临的挑战以及工业应用前景。