Suppr超能文献

使用主动机器学习加速 CO 电催化剂的发现。

Accelerated discovery of CO electrocatalysts using active machine learning.

机构信息

Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.

College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, China.

出版信息

Nature. 2020 May;581(7807):178-183. doi: 10.1038/s41586-020-2242-8. Epub 2020 May 13.

Abstract

The rapid increase in global energy demand and the need to replace carbon dioxide (CO)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy. Particularly attractive is the electrochemical reduction of CO to chemical feedstocks, which uses both CO and renewable energy. Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products, and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 ± 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO reduction. Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.

摘要

全球能源需求的快速增长,以及用可再生能源替代二氧化碳(CO)排放的化石燃料的需求,促使人们对间歇式太阳能和风能的化学储存产生了兴趣。电化学还原 CO 为化学原料特别有吸引力,因为它同时利用了 CO 和可再生能源。当目标是更有价值的多碳产品时,铜一直是该反应的主要电催化剂,而针对乙烯的工艺改进尤为显著。然而,迄今为止,所实现的能量效率和生产力(电流密度)仍低于以具有成本竞争力的价格生产乙烯所需的值。在这里,我们描述了使用密度泛函理论计算与主动机器学习相结合识别的 Cu-Al 电催化剂,该电催化剂以迄今为止报道的最高法拉第效率高效地将 CO 还原为乙烯。在 400 毫安/平方厘米的电流密度(相对于纯铜的约 66%)和 150 毫安/平方厘米的阴极侧(半电池)乙烯功率转换效率 55±2%下,实现了超过 80%的法拉第效率。我们进行了计算研究,表明 Cu-Al 合金提供了多个位点和表面取向,具有近优化的 CO 结合,以实现高效和选择性的 CO 还原。此外,原位 X 射线吸收测量表明 Cu 和 Al 能够实现有利于 C-C 二聚化的有利的 Cu 配位环境。这些发现说明了计算和机器学习在指导多金属系统的实验探索方面的价值,这些系统超越了传统单金属电催化剂的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验