Suppr超能文献

指数生长酵母中甘油积累的渗透意义

Osmotic significance of glycerol accumulation in exponentially growing yeasts.

作者信息

Reed R H, Chudek J A, Foster R, Gadd G M

机构信息

Department of Biological Sciences, University of Dundee, Scotland.

出版信息

Appl Environ Microbiol. 1987 Sep;53(9):2119-23. doi: 10.1128/aem.53.9.2119-2123.1987.

Abstract

Natural-abundance 13C-nuclear magnetic resonance spectroscopy has shown glycerol to be the major osmotically significant low-molecular-weight solute in exponentially growing, salt-stressed cells of the yeasts Saccharomyces cerevisiae, Zygosaccharomyces rouxii, and Debaromyces hansenii. Measurement of the intracellular nonosmotic volume (i.e., the fraction of the cell that is osmotically unresponsive) by using the Boyle-van't Hoff relationship (for nonturgid cells, the osmotic volume is directly proportional to the reciprocal of the external osmotic pressure) showed that the nonosmotic volume represented up to 53% of the total cell volume; the highest values were recorded in media with maximum added NaCl. Determinations of intracellular glycerol levels with respect to cell osmotic volumes showed that increases in intracellular glycerol may counterbalance up to 95% of the external osmotic pressure due to added NaCl. The lack of other organic osmotica in 13C-nuclear magnetic resonance spectra indicates that inorganic ions may constitute the remaining component of intracellular osmotic pressure.

摘要

自然丰度13C核磁共振光谱显示,甘油是酿酒酵母、鲁氏接合酵母和汉逊德巴利酵母等酵母在指数生长期、盐胁迫细胞中主要的具有重要渗透作用的低分子量溶质。利用玻意耳-范托夫关系(对于非膨胀细胞,渗透体积与外部渗透压的倒数成正比)测量细胞内非渗透体积(即细胞中对渗透无反应的部分)表明,非渗透体积占细胞总体积的比例高达53%;在添加了最大量NaCl的培养基中记录到了最高值。关于细胞渗透体积的细胞内甘油水平测定表明,由于添加了NaCl,细胞内甘油的增加可能抵消高达95%的外部渗透压。13C核磁共振光谱中缺乏其他有机渗透剂,这表明无机离子可能构成细胞内渗透压的其余部分。

相似文献

1
Osmotic significance of glycerol accumulation in exponentially growing yeasts.
Appl Environ Microbiol. 1987 Sep;53(9):2119-23. doi: 10.1128/aem.53.9.2119-2123.1987.
7
Glycerol production by yeasts under osmotic and sulfite stress.
Can J Microbiol. 1999 Aug;45(8):695-9. doi: 10.1139/w99-054.

引用本文的文献

1
Physical constraints and biological regulations underlie universal osmoresponses.
Elife. 2025 Jul 16;13:RP102858. doi: 10.7554/eLife.102858.
3
Prospects of thermotolerant Kluyveromyces marxianus for high solids ethanol fermentation of lignocellulosic biomass.
Biotechnol Biofuels Bioprod. 2022 Dec 6;15(1):134. doi: 10.1186/s13068-022-02232-9.
5
6
Novel elasticity measurements reveal C. elegans cuticle stiffens with age and in a long-lived mutant.
Biophys J. 2022 Feb 15;121(4):515-524. doi: 10.1016/j.bpj.2022.01.013. Epub 2022 Jan 19.
8
L-asparaginase Production by in a Bench-Scale Bioreactor With Co-production of Lipids.
Front Bioeng Biotechnol. 2020 Dec 17;8:576511. doi: 10.3389/fbioe.2020.576511. eCollection 2020.
10
A strategy for synergistic ethanol yield and improved production predictability through blending feedstocks.
Biotechnol Biofuels. 2020 Sep 5;13:156. doi: 10.1186/s13068-020-01791-z. eCollection 2020.

本文引用的文献

1
Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga.
Science. 1980 Nov 7;210(4470):650-1. doi: 10.1126/science.210.4470.650.
2
Accumulation of metabolites by halotolerant algae and its industrial potential.
Annu Rev Microbiol. 1983;37:95-119. doi: 10.1146/annurev.mi.37.100183.000523.
3
Amino acid permeability of pea chloroplasts as measured by osmotically determined reflection coefficients.
Biochim Biophys Acta. 1970 Jul 7;211(1):79-87. doi: 10.1016/0005-2736(70)90125-2.
5
Water relations of sugar-tolerant yeasts: the role of intracellular polyols.
J Gen Microbiol. 1972 Oct;72(3):589-91. doi: 10.1099/00221287-72-3-589.
6
Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae.
J Gen Microbiol. 1986 Jul;132(7):2023-34. doi: 10.1099/00221287-132-7-2023.
7
Microbial water stress.
Bacteriol Rev. 1976 Dec;40(4):803-46. doi: 10.1128/br.40.4.803-846.1976.
8
Permeability of the cell envelope and osmotic behavior in Saccharomyces cerevisiae.
J Bacteriol. 1977 Aug;131(2):564-71. doi: 10.1128/jb.131.2.564-571.1977.
9
Compatible solutes and extreme water stress in eukaryotic micro-organisms.
Adv Microb Physiol. 1978;17:181-242. doi: 10.1016/s0065-2911(08)60058-2.
10
Role of amino acids in osmoregulation of non-halophilic bacteria.
Nature. 1975 Oct 2;257(5525):398-400. doi: 10.1038/257398a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验