IEEE Trans Med Imaging. 2020 Jun;39(6):2277-2286. doi: 10.1109/TMI.2020.2970867. Epub 2020 Jan 31.
Image post-processing is used in clinical-grade ultrasound scanners to improve image quality (e.g., reduce speckle noise and enhance contrast). These post-processing techniques vary across manufacturers and are generally kept proprietary, which presents a challenge for researchers looking to match current clinical-grade workflows. We introduce a deep learning framework, MimickNet, that transforms conventional delay-and-summed (DAS) beams into the approximate Dynamic Tissue Contrast Enhanced (DTCE™) post-processed images found on Siemens clinical-grade scanners. Training MimickNet only requires post-processed image samples from a scanner of interest without the need for explicit pairing to DAS data. This flexibility allows MimickNet to hypothetically approximate any manufacturer's post-processing without access to the pre-processed data. MimickNet post-processing achieves a 0.940 ± 0.018 structural similarity index measurement (SSIM) compared to clinical-grade post-processing on a 400 cine-loop test set, 0.937 ± 0.025 SSIM on a prospectively acquired dataset, and 0.928 ± 0.003 SSIM on an out-of-distribution cardiac cine-loop after gain adjustment. To our knowledge, this is the first work to establish deep learning models that closely approximate ultrasound post-processing found in current medical practice. MimickNet serves as a clinical post-processing baseline for future works in ultrasound image formation to compare against. Additionally, it can be used as a pretrained model for fine-tuning towards different post-processing techniques. To this end, we have made the MimickNet software, phantom data, and permitted in vivo data open-source at https://github.com/ouwen/MimickNet.
图像后处理用于临床级超声扫描仪中,以改善图像质量(例如,降低斑点噪声并增强对比度)。这些后处理技术因制造商而异,通常是专有的,这给希望匹配当前临床级工作流程的研究人员带来了挑战。我们引入了一个深度学习框架 MimickNet,它可以将传统的延迟和求和(DAS)波束转换为西门子临床级扫描仪上找到的近似动态组织对比度增强(DTCE™)后处理图像。训练 MimickNet 只需要感兴趣的扫描仪的后处理图像样本,而无需明确配对到 DAS 数据。这种灵活性使 MimickNet 可以假设在没有访问预处理数据的情况下接近任何制造商的后处理。MimickNet 后处理在 400 个电影循环测试集上与临床级后处理相比,结构相似性指数测量(SSIM)达到 0.940 ± 0.018,在前瞻性采集数据集上达到 0.937 ± 0.025 SSIM,在增益调整后的分布外心脏电影循环上达到 0.928 ± 0.003 SSIM。据我们所知,这是首次建立与当前医学实践中发现的超声后处理非常接近的深度学习模型的工作。MimickNet 为未来的超声图像形成工作提供了临床后处理基准,可以与之进行比较。此外,它可以用作针对不同后处理技术进行微调的预训练模型。为此,我们在 https://github.com/ouwen/MimickNet 上开源了 MimickNet 软件、体模数据和允许的体内数据。