Henriques João, Lindorff-Larsen Kresten
Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Biophys J. 2020 Nov 17;119(10):2010-2018. doi: 10.1016/j.bpj.2020.06.040. Epub 2020 Oct 14.
Proteins carry out a wide range of functions that are tightly regulated in space and time. Protein phosphorylation is the most common post-translation modification of proteins and plays a key role in the regulation of many biological processes. The finding that many phosphorylated residues are not solvent exposed in the unphosphorylated state opens several questions for understanding the mechanism that underlies phosphorylation and how phosphorylation may affect protein structures. First, because kinases need access to the phosphorylated residue, how do such buried residues become modified? Second, once phosphorylated, what are the structural effects of phosphorylation of buried residues, and do they lead to changed conformational dynamics? We have used the ternary complex between p27 (p27), Cdk2, and cyclin A to study these questions using enhanced sampling molecular dynamics simulations. In line with previous NMR and single-molecule fluorescence experiments, we observe transient exposure of Tyr88 in p27, even in its unphosphorylated state. Once Tyr88 is phosphorylated, we observe a coupling to a second site, thus making Tyr74 more easily exposed and thereby the target for a second phosphorylation step. Our observations provide atomic details on how protein dynamics plays a role in modulating multisite phosphorylation in p27, thus supplementing previous experimental observations. More generally, we discuss how the observed phenomenon of transient exposure of buried residues may play a more general role in regulating protein function.
蛋白质执行着广泛的功能,这些功能在空间和时间上受到严格调控。蛋白质磷酸化是蛋白质最常见的翻译后修饰,在许多生物过程的调控中起着关键作用。许多磷酸化残基在未磷酸化状态下不暴露于溶剂中的这一发现,引发了几个关于理解磷酸化基础机制以及磷酸化如何影响蛋白质结构的问题。首先,由于激酶需要接触到磷酸化残基,那么这些埋藏的残基是如何被修饰的呢?其次,一旦被磷酸化,埋藏残基磷酸化的结构效应是什么,它们是否会导致构象动力学的改变?我们利用p27、细胞周期蛋白依赖性激酶2(Cdk2)和细胞周期蛋白A之间的三元复合物,通过增强采样分子动力学模拟来研究这些问题。与之前的核磁共振(NMR)和单分子荧光实验一致,我们观察到即使在未磷酸化状态下,p27中的酪氨酸88(Tyr88)也会有短暂暴露。一旦Tyr88被磷酸化,我们观察到它与第二个位点发生偶联,从而使Tyr74更容易暴露,进而成为第二步磷酸化的靶点。我们的观察结果提供了关于蛋白质动力学如何在调节p27中的多位点磷酸化中发挥作用的原子细节,从而补充了之前的实验观察结果。更普遍地说,我们讨论了埋藏残基短暂暴露这一观察到的现象如何可能在调节蛋白质功能中发挥更普遍的作用。