National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
BMC Biol. 2020 Nov 4;18(1):159. doi: 10.1186/s12915-020-00885-2.
DNA and RNA of all cellular life forms and many viruses contain an expansive repertoire of modified bases. The modified bases play diverse biological roles that include both regulation of transcription and translation, and protection against restriction endonucleases and antibiotics. Modified bases are often recognized by dedicated protein domains. However, the elaborate networks of interactions and processes mediated by modified bases are far from being completely understood.
We present a comprehensive census and classification of EVE domains that belong to the PUA/ASCH domain superfamily and bind various modified bases in DNA and RNA. We employ the "guilt by association" approach to make functional inferences from comparative analysis of bacterial and archaeal genomes, based on the distribution and associations of EVE domains in (predicted) operons and functional networks of genes. Prokaryotes encode two classes of EVE domain proteins, slow-evolving and fast-evolving ones. Slow-evolving EVE domains in α-proteobacteria are embedded in conserved operons, potentially involved in coupling between translation and respiration, cytochrome c biogenesis in particular, via binding 5-methylcytosine in tRNAs. In β- and γ-proteobacteria, the conserved associations implicate the EVE domains in the coordination of cell division, biofilm formation, and global transcriptional regulation by non-coding 6S small RNAs, which are potentially modified and bound by the EVE domains. In eukaryotes, the EVE domain-containing THYN1-like proteins have been reported to inhibit PCD and regulate the cell cycle, potentially, via binding 5-methylcytosine and its derivatives in DNA and/or RNA. We hypothesize that the link between PCD and cytochrome c was inherited from the α-proteobacterial and proto-mitochondrial endosymbiont and, unexpectedly, could involve modified base recognition by EVE domains. Fast-evolving EVE domains are typically embedded in defense contexts, including toxin-antitoxin modules and type IV restriction systems, suggesting roles in the recognition of modified bases in invading DNA molecules and targeting them for restriction. We additionally identified EVE-like prokaryotic Development and Cell Death (DCD) domains that are also implicated in defense functions including PCD. This function was inherited by eukaryotes, but in animals, the DCD proteins apparently were displaced by the extended Tudor family proteins, whose partnership with Piwi-related Argonautes became the centerpiece of the Piwi-interacting RNA (piRNA) system.
Recognition of modified bases in DNA and RNA by EVE-like domains appears to be an important, but until now, under-appreciated, common denominator in a variety of processes including PCD, cell cycle control, antivirus immunity, stress response, and germline development in animals.
所有细胞生命形式的 DNA 和 RNA 以及许多病毒都含有广泛的修饰碱基。这些修饰碱基发挥着多种生物学作用,包括转录和翻译的调控,以及对限制内切酶和抗生素的保护。修饰碱基通常被专门的蛋白质结构域识别。然而,修饰碱基介导的复杂相互作用和过程远未被完全理解。
我们展示了一个全面的普查和分类的 EVE 结构域,属于 PUA/ASCH 结构域超家族,结合 DNA 和 RNA 中的各种修饰碱基。我们采用“关联有罪”的方法,根据细菌和古菌基因组中 EVE 结构域的分布和关联,基于操纵子和基因功能网络,对功能进行推断。原核生物编码两类 EVE 结构域蛋白,即缓慢进化和快速进化的蛋白。α-变形菌中的慢进化 EVE 结构域嵌入保守的操纵子中,可能通过结合 tRNA 中的 5-甲基胞嘧啶参与翻译和呼吸的偶联,特别是细胞色素 c 的生物发生。在β-和γ-变形菌中,保守的关联表明 EVE 结构域参与细胞分裂、生物膜形成和非编码 6S 小 RNA 的全局转录调控,这些小 RNA 可能被 EVE 结构域修饰和结合。在真核生物中,含有 EVE 结构域的 THYN1 样蛋白已被报道抑制 PCD 并调节细胞周期,可能通过结合 DNA 和/或 RNA 中的 5-甲基胞嘧啶及其衍生物。我们假设 PCD 和细胞色素 c 之间的联系是从α-变形菌和原始线粒体内共生体继承而来的,出人意料的是,它可能涉及 EVE 结构域对修饰碱基的识别。快速进化的 EVE 结构域通常嵌入防御环境中,包括毒素-抗毒素模块和 IV 型限制系统,表明其在识别入侵 DNA 分子中的修饰碱基并将其靶向限制方面的作用。我们还鉴定了具有 EVE 结构域的原核生物发育和细胞死亡(DCD)结构域,这些结构域也参与防御功能,包括 PCD。这一功能被真核生物继承,但在动物中,DCD 蛋白显然被扩展的 Tudor 家族蛋白取代,后者与 Piwi 相关 Argonautes 的伙伴关系成为 Piwi 相互作用 RNA(piRNA)系统的核心。
EVE 样结构域对 DNA 和 RNA 中修饰碱基的识别似乎是一个重要的,但迄今为止,被低估的共同点,在包括 PCD、细胞周期控制、抗病毒免疫、应激反应和动物生殖细胞发育在内的多种过程中。