Bajwa Gagan, Lanz Inès, Cardenas Mara, Brenner Malcolm K, Arber Caroline
Department of Oncology UNIL CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA.
J Immunother Cancer. 2020 Nov;8(2). doi: 10.1136/jitc-2020-001487.
Genetically engineered virus-specific T cells (VSTs) are a platform for adoptive cell therapy after allogeneic hematopoietic stem cell transplantation. However, redirection to a tumor-associated antigen by the introduction of a transgenic T-cell receptor (TCR) reduces anti-viral activity, thereby impeding the possibility of preventing or treating two distinct complications-malignant relapse and viral infection-with a single cell therapy product. Availability of CD8αβ co-receptor molecules can significantly impact class I restricted T-cell activation, and thus, we interrogated whether transgenic CD8αβ improves anti-viral activity mediated by native VSTs with or without a co-expressed transgenic TCR (TCR8).
Our existing clinical VST manufacturing platform was adapted and validated to engineer TCR+ or TCR8+ VSTs targeting cytomegalovirus and Epstein-Barr virus. Simultaneous anti-viral and anti-tumor function of engineered VSTs was assessed in vitro and in vivo. We used pentamer staining, interferon (IFN)-γ enzyme-linked immunospot (ELISpot), intracellular cytokine staining (ICS), cytotoxicity assays, co-cultures, and cytokine secretion assays for the in vitro characterization. The in vivo anti-tumor function was assessed in a leukemia xenograft mouse model.
Both transgenic CD8αβ alone and TCR8 had significant impact on the anti-viral function of engineered VSTs, and TCR8+ VSTs had comparable anti-viral activity as non-engineered VSTs as determined by IFN-γ ELISpot, ICS and cytotoxicity assays. TCR8-engineered VSTs had improved anti-tumor function and greater effector cytokine production in vitro, as well as enhanced anti-tumor function against leukemia xenografts in mice.
Incorporation of transgenic CD8αβ into vectors for TCR-targetable antigens preserves anti-viral activity of TCR transgenic VSTs while simultaneously supporting tumor-directed activity mediated by a transgenic TCR. Our approach may provide clinical benefit in preventing and treating viral infections and malignant relapse post-transplant.
基因工程病毒特异性T细胞(VSTs)是异基因造血干细胞移植后过继性细胞治疗的一个平台。然而,通过引入转基因T细胞受体(TCR)将其重定向至肿瘤相关抗原会降低抗病毒活性,从而阻碍了用单一细胞治疗产品预防或治疗两种不同并发症——恶性肿瘤复发和病毒感染——的可能性。CD8αβ共受体分子的可用性会显著影响I类限制性T细胞活化,因此,我们探究了转基因CD8αβ是否能改善由天然VSTs介导的抗病毒活性,无论是否共表达转基因TCR(TCR8)。
我们现有的临床VST制造平台经过改造和验证,以构建靶向巨细胞病毒和EB病毒的TCR+或TCR8+VSTs。在体外和体内评估工程化VSTs的同时抗病毒和抗肿瘤功能。我们使用五聚体染色、干扰素(IFN)-γ酶联免疫斑点(ELISpot)、细胞内细胞因子染色(ICS)、细胞毒性测定、共培养和细胞因子分泌测定进行体外特性分析。在白血病异种移植小鼠模型中评估体内抗肿瘤功能。
单独的转基因CD8αβ和TCR8对工程化VSTs的抗病毒功能均有显著影响,通过IFN-γ ELISpot、ICS和细胞毒性测定确定,TCR8+VSTs具有与非工程化VSTs相当的抗病毒活性。TCR8工程化VSTs在体外具有改善的抗肿瘤功能和更高的效应细胞因子产生,以及对小鼠白血病异种移植更强的抗肿瘤功能。
将转基因CD8αβ整合到靶向TCR抗原的载体中可保留TCR转基因VSTs的抗病毒活性,同时支持由转基因TCR介导的肿瘤定向活性。我们的方法可能在预防和治疗移植后病毒感染和恶性肿瘤复发方面提供临床益处。