Suppr超能文献

可转移质粒的持续存在潜力。

The persistence potential of transferable plasmids.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.

Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.

出版信息

Nat Commun. 2020 Nov 4;11(1):5589. doi: 10.1038/s41467-020-19368-7.

Abstract

Conjugative plasmids can mediate the spread and maintenance of diverse traits and functions in microbial communities. This role depends on the plasmid's ability to persist in a population. However, for a community consisting of multiple populations transferring multiple plasmids, the conditions underlying plasmid persistence are poorly understood. Here, we describe a plasmid-centric framework that makes it computationally feasible to analyze gene flow in complex communities. Using this framework, we derive the 'persistence potential': a general, heuristic metric that predicts the persistence and abundance of any plasmids. We validate the metric with engineered microbial consortia transferring mobilizable plasmids and with quantitative data available in the literature. We believe that our framework and the resulting metric will facilitate a quantitative understanding of natural microbial communities and the engineering of microbial consortia.

摘要

可移动质粒可以介导微生物群落中多种特征和功能的传播和维持。这种作用取决于质粒在种群中持续存在的能力。然而,对于由多个转移多种质粒的种群组成的群落而言,质粒持续存在的条件还知之甚少。在这里,我们描述了一个以质粒为中心的框架,该框架使在复杂群落中分析基因流动在计算上成为可行。使用这个框架,我们推导出了“持久性潜力”:一种通用的启发式度量标准,可以预测任何质粒的持久性和丰度。我们用可转移质粒的工程微生物联合体和文献中可用的定量数据来验证该度量标准。我们相信,我们的框架和由此产生的度量标准将有助于对自然微生物群落进行定量理解,并有助于微生物联合体的工程设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1de2/7642394/1389eb6a5b11/41467_2020_19368_Fig1_HTML.jpg

相似文献

1
The persistence potential of transferable plasmids.
Nat Commun. 2020 Nov 4;11(1):5589. doi: 10.1038/s41467-020-19368-7.
2
Promotion of plasmid maintenance by heterogeneous partitioning of microbial communities.
Cell Syst. 2023 Oct 18;14(10):895-905.e5. doi: 10.1016/j.cels.2023.09.002. Epub 2023 Oct 10.
3
Predicting plasmid persistence in microbial communities by coarse-grained modeling.
Bioessays. 2021 Sep;43(9):e2100084. doi: 10.1002/bies.202100084. Epub 2021 Jul 18.
5
Impact of conjugal transfer on the stability of IncP-1 plasmid pKJK5 in bacterial populations.
FEMS Microbiol Lett. 2007 Jan;266(2):250-6. doi: 10.1111/j.1574-6968.2006.00536.x. Epub 2006 Nov 21.
6
A culture-independent method for studying transfer of IncI1 plasmids from wild-type Escherichia coli in complex microbial communities.
J Microbiol Methods. 2018 Sep;152:18-26. doi: 10.1016/j.mimet.2018.07.009. Epub 2018 Jul 18.
7
Ecological dynamics of plasmid transfer and persistence in microbial communities.
Curr Opin Microbiol. 2022 Aug;68:102152. doi: 10.1016/j.mib.2022.102152. Epub 2022 May 2.
8
Identification of the conjugative and mobilizable plasmid fragments in the plasmidome using sequence signatures.
Microb Genom. 2020 Nov;6(11). doi: 10.1099/mgen.0.000459. Epub 2020 Oct 19.
9
Transfer Potential of Plasmids Conferring Extended-Spectrum-Cephalosporin Resistance in Escherichia coli from Poultry.
Appl Environ Microbiol. 2017 May 31;83(12). doi: 10.1128/AEM.00654-17. Print 2017 Jun 15.

引用本文的文献

2
Linear scaling reveals low-dimensional structure in observable microbial dynamics.
bioRxiv. 2025 Jun 19:2025.06.13.659614. doi: 10.1101/2025.06.13.659614.
4
Spatial entropy drives the maintenance and dissemination of transferable plasmids.
Mol Syst Biol. 2025 Apr 29. doi: 10.1038/s44320-025-00110-8.
5
A roadmap to understanding and anticipating microbial gene transfer in soil communities.
Microbiol Mol Biol Rev. 2025 Jun 25;89(2):e0022524. doi: 10.1128/mmbr.00225-24. Epub 2025 Apr 8.
6
A predatory gene drive for targeted control of self-transmissible plasmids.
Sci Adv. 2025 Apr 4;11(14):eads4735. doi: 10.1126/sciadv.ads4735. Epub 2025 Apr 2.
7
A bayesian approach for parameterizing and predicting plasmid conjugation dynamics.
Sci Rep. 2025 Mar 3;15(1):7396. doi: 10.1038/s41598-024-82799-5.
8
Population-level amplification of gene regulation by programmable gene transfer.
Nat Chem Biol. 2025 Jan 8. doi: 10.1038/s41589-024-01817-9.
9
The evolutionary landscape of prokaryotic chromosome/plasmid balance.
Commun Biol. 2024 Nov 4;7(1):1434. doi: 10.1038/s42003-024-07167-5.
10
Data-driven learning of structure augments quantitative prediction of biological responses.
PLoS Comput Biol. 2024 Jun 3;20(6):e1012185. doi: 10.1371/journal.pcbi.1012185. eCollection 2024 Jun.

本文引用的文献

3
Metagenomic engineering of the mammalian gut microbiome in situ.
Nat Methods. 2019 Feb;16(2):167-170. doi: 10.1038/s41592-018-0301-y. Epub 2019 Jan 14.
4
Going around in circles: virulence plasmids in enteric pathogens.
Nat Rev Microbiol. 2018 Aug;16(8):484-495. doi: 10.1038/s41579-018-0031-2.
5
Bacterial growth, flow, and mixing shape human gut microbiota density and composition.
Gut Microbes. 2018 Nov 2;9(6):559-566. doi: 10.1080/19490976.2018.1448741. Epub 2018 May 9.
6
Multiscale Evolutionary Dynamics of Host-Associated Microbiomes.
Cell. 2018 Mar 8;172(6):1216-1227. doi: 10.1016/j.cell.2018.02.015.
7
Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species.
FEMS Microbiol Ecol. 2018 Jan 1;94(1). doi: 10.1093/femsec/fix172.
8
Persistence and reversal of plasmid-mediated antibiotic resistance.
Nat Commun. 2017 Nov 22;8(1):1689. doi: 10.1038/s41467-017-01532-1.
9
Compensatory mutations improve general permissiveness to antibiotic resistance plasmids.
Nat Ecol Evol. 2017 Sep;1(9):1354-1363. doi: 10.1038/s41559-017-0243-2. Epub 2017 Aug 7.
10
Positive selection inhibits gene mobilisation and transfer in soil bacterial communities.
Nat Ecol Evol. 2017 Sep;1(9):1348-1353. doi: 10.1038/s41559-017-0250-3. Epub 2017 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验