Suppr超能文献

数学模型研究细菌中抗菌药物耐药基因的水平转移:研究现状与建议。

Mathematical modelling to study the horizontal transfer of antimicrobial resistance genes in bacteria: current state of the field and recommendations.

机构信息

Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.

Institute for Infection and Immunity, St George's University of London, London, UK.

出版信息

J R Soc Interface. 2019 Aug 30;16(157):20190260. doi: 10.1098/rsif.2019.0260. Epub 2019 Aug 14.

Abstract

Antimicrobial resistance (AMR) is one of the greatest public health challenges we are currently facing. To develop effective interventions against this, it is essential to understand the processes behind the spread of AMR. These are partly dependent on the dynamics of horizontal transfer of resistance genes between bacteria, which can occur by conjugation (direct contact), transformation (uptake from the environment) or transduction (mediated by bacteriophages). Mathematical modelling is a powerful tool to investigate the dynamics of AMR; however, the extent of its use to study the horizontal transfer of AMR genes is currently unclear. In this systematic review, we searched for mathematical modelling studies that focused on horizontal transfer of AMR genes. We compared their aims and methods using a list of predetermined criteria and used our results to assess the current state of this research field. Of the 43 studies we identified, most focused on the transfer of single genes by conjugation in Escherichia coli in culture and its impact on the bacterial evolutionary dynamics. Our findings highlight the existence of an important research gap in the dynamics of transformation and transduction and the overall public health implications of horizontal transfer of AMR genes. To further develop this field and improve our ability to control AMR, it is essential that we clarify the structural complexity required to study the dynamics of horizontal gene transfer, which will require cooperation between microbiologists and modellers.

摘要

抗生素耐药性(AMR)是我们目前面临的最大公共卫生挑战之一。为了开发有效的干预措施来应对这一挑战,了解 AMR 传播背后的过程至关重要。这些过程部分取决于耐药基因在细菌之间水平转移的动态,这可以通过接合(直接接触)、转化(从环境中摄取)或转导(由噬菌体介导)发生。数学建模是研究 AMR 动态的有力工具;然而,目前尚不清楚其在研究 AMR 基因水平转移方面的使用程度。在这项系统评价中,我们搜索了专注于 AMR 基因水平转移的数学建模研究。我们使用预定的标准列表比较了它们的目标和方法,并使用我们的结果评估了该研究领域的现状。在我们确定的 43 项研究中,大多数研究集中在大肠杆菌中通过接合转移单个基因及其对细菌进化动态的影响。我们的研究结果强调了在转化和转导的动态以及 AMR 基因水平转移的整体公共卫生影响方面存在重要的研究差距。为了进一步发展这一领域并提高我们控制 AMR 的能力,必须阐明研究水平基因转移动态所需的结构复杂性,这将需要微生物学家和建模者之间的合作。

相似文献

引用本文的文献

1
10
Effective antibiotic dosing in the presence of resistant strains.存在耐药菌株时的有效抗生素剂量。
PLoS One. 2022 Oct 10;17(10):e0275762. doi: 10.1371/journal.pone.0275762. eCollection 2022.

本文引用的文献

1
Mobile Compensatory Mutations Promote Plasmid Survival.移动补偿性突变促进质粒存活。
mSystems. 2019 Jan 15;4(1). doi: 10.1128/mSystems.00186-18. eCollection 2019 Jan-Feb.
2
Within-host dynamics shape antibiotic resistance in commensal bacteria.宿主内动态塑造共生菌中的抗生素耐药性。
Nat Ecol Evol. 2019 Mar;3(3):440-449. doi: 10.1038/s41559-018-0786-x. Epub 2019 Feb 11.
7
Why sensitive bacteria are resistant to hospital infection control.为何敏感细菌对医院感染控制具有抗性。
Wellcome Open Res. 2017 Nov 22;2:16. doi: 10.12688/wellcomeopenres.11033.2. eCollection 2017.
10
Predictive Modeling of a Batch Filter Mating Process.间歇式过滤交配过程的预测建模
Front Microbiol. 2017 Mar 21;8:461. doi: 10.3389/fmicb.2017.00461. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验