Suppr超能文献

利用深度学习进行轮廓校正的光学特性实时、宽视野和高质量单快照成像。

Real-time, wide-field and high-quality single snapshot imaging of optical properties with profile correction using deep learning.

作者信息

Aguénounon Enagnon, Smith Jason T, Al-Taher Mahdi, Diana Michele, Intes Xavier, Gioux Sylvain

机构信息

University of Strasbourg, ICube Laboratory, 300 Boulevard Sébastien Brant, 67412 Illkirch, France.

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

Biomed Opt Express. 2020 Sep 18;11(10):5701-5716. doi: 10.1364/BOE.397681. eCollection 2020 Oct 1.

Abstract

The development of real-time, wide-field and quantitative diffuse optical imaging methods to visualize functional and structural biomarkers of living tissues is a pressing need for numerous clinical applications including image-guided surgery. In this context, Spatial Frequency Domain Imaging (SFDI) is an attractive method allowing for the fast estimation of optical properties using the Single Snapshot of Optical Properties (SSOP) approach. Herein, we present a novel implementation of SSOP based on a combination of deep learning network at the filtering stage and Graphics Processing Units (GPU) capable of simultaneous high visual quality image reconstruction, surface profile correction and accurate optical property (OP) extraction in real-time across large fields of view. In the most optimal implementation, the presented methodology demonstrates megapixel profile-corrected OP imaging with results comparable to that of profile-corrected SFDI, with a processing time of 18 ms and errors relative to SFDI method less than 10% in both profilometry and profile-corrected OPs. This novel processing framework lays the foundation for real-time multispectral quantitative diffuse optical imaging for surgical guidance and healthcare applications. All code and data used for this work is publicly available at www.healthphotonics.org under the resources tab.

摘要

开发实时、大视野和定量的漫射光学成像方法以可视化活组织的功能和结构生物标志物,对于包括图像引导手术在内的众多临床应用来说是一项迫切需求。在这种背景下,空间频域成像(SFDI)是一种具有吸引力的方法,它允许使用光学特性单快照(SSOP)方法快速估计光学特性。在此,我们提出了一种基于深度学习网络在滤波阶段与图形处理单元(GPU)相结合的SSOP新实现方式,该方式能够在大视野范围内同时进行高视觉质量图像重建、表面轮廓校正和准确的光学特性(OP)实时提取。在最优实现中,所提出的方法展示了百万像素级的轮廓校正OP成像,其结果与轮廓校正的SFDI相当,处理时间为18毫秒,在轮廓测量和轮廓校正的OP方面相对于SFDI方法的误差均小于10%。这种新颖的处理框架为用于手术引导和医疗保健应用的实时多光谱定量漫射光学成像奠定了基础。这项工作所使用的所有代码和数据可在www.healthphotonics.org的资源标签下公开获取。

相似文献

2
Real-time, profile-corrected single snapshot imaging of optical properties.光学特性的实时、轮廓校正单快照成像
Biomed Opt Express. 2015 Sep 21;6(10):4051-62. doi: 10.1364/BOE.6.004051. eCollection 2015 Oct 1.
5
qF-SSOP: real-time optical property corrected fluorescence imaging.qF-SSOP:实时光学特性校正荧光成像
Biomed Opt Express. 2017 Jul 10;8(8):3597-3605. doi: 10.1364/BOE.8.003597. eCollection 2017 Aug 1.

引用本文的文献

4
High-Precision Chromatic Confocal Technologies: A Review.高精度共聚焦技术综述
Micromachines (Basel). 2024 Sep 30;15(10):1224. doi: 10.3390/mi15101224.

本文引用的文献

3
Fast fit-free analysis of fluorescence lifetime imaging via deep learning.基于深度学习的快速无拟合荧光寿命成像分析。
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24019-24030. doi: 10.1073/pnas.1912707116. Epub 2019 Nov 12.
6
Deep learning for cellular image analysis.深度学习在细胞图像分析中的应用。
Nat Methods. 2019 Dec;16(12):1233-1246. doi: 10.1038/s41592-019-0403-1. Epub 2019 May 27.
10
Review of structured light in diffuse optical imaging.结构光漫射光学成像综述。
J Biomed Opt. 2018 Sep;24(7):1-20. doi: 10.1117/1.JBO.24.7.071602.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验