Aguénounon Enagnon, Smith Jason T, Al-Taher Mahdi, Diana Michele, Intes Xavier, Gioux Sylvain
University of Strasbourg, ICube Laboratory, 300 Boulevard Sébastien Brant, 67412 Illkirch, France.
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
Biomed Opt Express. 2020 Sep 18;11(10):5701-5716. doi: 10.1364/BOE.397681. eCollection 2020 Oct 1.
The development of real-time, wide-field and quantitative diffuse optical imaging methods to visualize functional and structural biomarkers of living tissues is a pressing need for numerous clinical applications including image-guided surgery. In this context, Spatial Frequency Domain Imaging (SFDI) is an attractive method allowing for the fast estimation of optical properties using the Single Snapshot of Optical Properties (SSOP) approach. Herein, we present a novel implementation of SSOP based on a combination of deep learning network at the filtering stage and Graphics Processing Units (GPU) capable of simultaneous high visual quality image reconstruction, surface profile correction and accurate optical property (OP) extraction in real-time across large fields of view. In the most optimal implementation, the presented methodology demonstrates megapixel profile-corrected OP imaging with results comparable to that of profile-corrected SFDI, with a processing time of 18 ms and errors relative to SFDI method less than 10% in both profilometry and profile-corrected OPs. This novel processing framework lays the foundation for real-time multispectral quantitative diffuse optical imaging for surgical guidance and healthcare applications. All code and data used for this work is publicly available at www.healthphotonics.org under the resources tab.
开发实时、大视野和定量的漫射光学成像方法以可视化活组织的功能和结构生物标志物,对于包括图像引导手术在内的众多临床应用来说是一项迫切需求。在这种背景下,空间频域成像(SFDI)是一种具有吸引力的方法,它允许使用光学特性单快照(SSOP)方法快速估计光学特性。在此,我们提出了一种基于深度学习网络在滤波阶段与图形处理单元(GPU)相结合的SSOP新实现方式,该方式能够在大视野范围内同时进行高视觉质量图像重建、表面轮廓校正和准确的光学特性(OP)实时提取。在最优实现中,所提出的方法展示了百万像素级的轮廓校正OP成像,其结果与轮廓校正的SFDI相当,处理时间为18毫秒,在轮廓测量和轮廓校正的OP方面相对于SFDI方法的误差均小于10%。这种新颖的处理框架为用于手术引导和医疗保健应用的实时多光谱定量漫射光学成像奠定了基础。这项工作所使用的所有代码和数据可在www.healthphotonics.org的资源标签下公开获取。