Suppr超能文献

超硬纳米碳金刚石和六方金刚石室温形成的研究。

Investigation of Room Temperature Formation of the Ultra-Hard Nanocarbons Diamond and Lonsdaleite.

作者信息

McCulloch Dougal G, Wong Sherman, Shiell Thomas B, Haberl Bianca, Cook Brenton A, Huang Xingshuo, Boehler Reinhard, McKenzie David R, Bradby Jodie E

机构信息

Physics, School of Science, RMIT University, Melbourne, VIC, 3001, Australia.

Research School of Physics, The Australian National University, Canberra, ACT, 2601, Australia.

出版信息

Small. 2020 Dec;16(50):e2004695. doi: 10.1002/smll.202004695. Epub 2020 Nov 4.

Abstract

Diamond is an attractive material due to its extreme hardness, high thermal conductivity, quantum optical, and biomedical applications. There is still much that is not understood about how diamonds form, particularly at room temperature and without catalysts. In this work, a new route for the formation of nanocrystalline diamond and the diamond-like phase lonsdaleite is presented. Both diamond phases are found to form together within bands with a core-shell structure following the high pressure treatment of a glassy carbon precursor at room temperature. The crystallographic arrangements of the diamond phases revealed that shear is the driving force for their formation and growth. This study gives new understanding of how shear can lead to crystallization in materials and helps elucidate how diamonds can form on Earth, in meteorite impacts and on other planets. Finally, the new shear induced formation mechanism works at room temperature, a key finding that may enable diamond and other technically important nanomaterials to be synthesized more readily.

摘要

钻石因其极高的硬度、高导热性、量子光学和生物医学应用而成为一种有吸引力的材料。关于钻石如何形成,尤其是在室温且无催化剂的情况下形成,仍有许多未知之处。在这项工作中,提出了一种形成纳米晶金刚石和类金刚石相六方金刚石的新途径。发现这两种金刚石相在室温下对玻璃态碳前驱体进行高压处理后,会在具有核壳结构的带内共同形成。金刚石相的晶体结构表明,剪切力是其形成和生长的驱动力。这项研究为剪切力如何导致材料结晶提供了新的认识,并有助于阐明钻石如何在地球上、陨石撞击中以及其他行星上形成。最后,新的剪切诱导形成机制在室温下起作用,这一关键发现可能使金刚石和其他技术上重要的纳米材料更容易合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验